Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (4): 1093-1102.doi: 10.12305/j.issn.1001-506X.2022.04.04
• Electronic Technology • Previous Articles Next Articles
Lufang LI1,2,3, Shuangxi ZHOU1,2,3, Huage HEI1,2,3, Qichao YU1,2, Changqing LIN1,2, Shengli SUN1,2,*
Received:
2021-04-22
Online:
2022-04-01
Published:
2022-04-01
Contact:
Shengli SUN
CLC Number:
Lufang LI, Shuangxi ZHOU, Huage HEI, Qichao YU, Changqing LIN, Shengli SUN. Multi-source autonomous reconstruction method based on SRAM FPGA[J]. Systems Engineering and Electronics, 2022, 44(4): 1093-1102.
Table 1
Option comparison"
参数性能 | 文献[ | 文献[ | 文献[ | 文献[ | 文献[ | 刷新芯片 | 本文 |
关键逻辑TMR | / | √ | / | √ | / | / | √ |
部分重配置 | √ | √ | √ | √ | √ | √ | √ |
重配置 | / | √ | / | / | √ | √ | √ |
回读寄存器 | / | / | / | / | / | √ | √ |
支持多种FPGA | / | / | / | / | / | 支持部分型号 | 支持可重构全部型号 |
支持外部存储器 | / | / | / | / | / | 支持部分型号 | 支持可上注全部型号 |
自主程序重构调整参数和预设程序上注 | / | / | / | / | / | 仅支持程序上注 | √ |
优点 | 设计相对简单 | 设计相对简单 | 设计相对简单 | 设计相对简单 | 设计相对简单 | 不需要代码实现, 芯片预留用户接口 | 系统设计灵活性高, 兼容FPGA型号以及外部存储器型号较多 |
缺点 | 需要代码实现, 设计灵活性较低, 纠错能力最弱 | 需要代码实现, 设计灵活性较低, 纠错能力较弱 | 需要代码实现, 设计灵活性较低, 纠错能力最弱 | 需要代码实现, 设计灵活性较低, 纠错能力较弱 | 需要代码实现, 设计灵活性较低, 纠错能力较弱 | 更改灵活性差, 兼容FPGA型号以及外部存储器型号有限 | 需要代码实现 |
1 | PHILIPPE A , GREG A . Assessing and mitigating radiation effects in xilinx FPGAs[M]. California: Propulsion Laboratory California Institute of Technology, 2008. |
2 | RAO Y, CHEN W, CAO Z G. A sequential sensing data transmission and fusion approach for large scale cognitive radios[C]//Proc. of the IEEE International Conference on Communications, 2010. |
3 | XING K F , YANG J , WANG Y K , et al. The research of anti-radiation technology on Xilinx SRAM-based FPGA[J]. Journal of Astronautics, 2007, 28 (1): 123- 129. |
4 | ITURBE X, AZKARATE M, MARTINEZ I, et al. A novel SEU, MBU and SHE handling strategy for Xilinx Virtex-4 FPGAs[C]//Proc. of the 19th International Conference on Field Programmable Logic and Applications, 2009. |
5 | 马寅, 安军社, 王连国, 等. 基于Scrubbing的空间SRAM型FPGA抗单粒子翻转系统设计[J]. 空间科学学报, 2012, 32 (2): 270- 276. |
MA Y , AN J S , WANG L G , et al. Design of space SRAM FPGA anti-single particle flip system based on scrubbing[J]. Chinese Journal of Space Science, 2012, 32 (2): 270- 276. | |
6 | 复旦微电子. 航天应用SEU加固推荐方案, JFM4VSX55RT[R]. 上海: 复旦微电子, 2017: 4-16. |
Fudan Microelectronics. Recommended SEU reinforcement scheme for aerospace applications, JFM4VSX55RT[R]. Shanghai: Fudan Microelectronics, 2017: 4-16. | |
7 |
PRAVEEN K S , JEREMY R , SRINIVAS K . Selective triple modular redundancy (STMR) based single-event upset (SEU) tolerant synthesis for FPGAs[J]. IEEE Trans.on Nuclear Science, 2004, 51 (5): 2957- 2969.
doi: 10.1109/TNS.2004.834955 |
8 |
STERPONE L , VIOLANTE M , JEREMY R , et al. Analysis of the robustness of the TMR architecture in SRAM-based FPGAs[J]. IEEE Trans.on Nuclear Science, 2005, 52 (5): 1545- 1549.
doi: 10.1109/TNS.2005.856543 |
9 | UG156. Xilinx TMR tool user guide[S]. SAN Jose: Xilinx, 2006. |
10 | KASTENSMIDT F L , CARRO L , REIS R . Fault-tolerance techniques for SRAM-based FPGAs[M]. New York: Springer, 2006. |
11 | ZOU W X, ZHANG W S, ZHOU Z, et al. Chain-based or rule cooperative spectrum sensing scheme in cognitive sensing networks[C]//Proc. of the International Symposium on Communications and Information Technologies, 2010: 1191-1195. |
12 | FULLER E, CAFFREY M, SALAZAR A, et al. Radiation testing update, SEU mitigation, and availability analysis of the Virtex FPGA for space reconfigurable computing[C]//Proc. of the 4th Annual Conference on Military and Aerospace Programmable Logic Devices, 2000. |
13 | GEORGE G, REZGUI S, SWIFT G, et al. Initial single-event effects testing and mitigation in the Xilinx Virtex Ⅱ-Pro FPGA[C]//Proc. of the Military and Aerospace Programmable Logic Devices International Conference, 2005. |
14 | CARL C, EARL F, JOE F, et al. Proton testing of SEU mitigation methods for the Virtex FPGA[C]//Proc. of the IEEE Microelectronics Reliability and Qualification Workshop, 2001. |
15 |
张宇宁, 张小林, 杨根庆, 等. 商用FPGA器件的单粒子效应模拟实验研究[J]. 宇航学报, 2009, 30 (5): 2025- 2030.
doi: 10.3873/j.issn.1000-1328.2009.05.047 |
ZHANG Y N , ZHANG X L , YANG G Q , et al. Experimental study on single particle effect simulation of commercial FPGA devices[J]. Journal of Astronautics, 2009, 30 (5): 2025- 2030.
doi: 10.3873/j.issn.1000-1328.2009.05.047 |
|
16 |
侯建文, 张爱兵, 郑香脂, 等. FPGA单粒子翻转事件在轨探测研究[J]. 宇航学报, 2014, 35 (4): 454- 458.
doi: 10.3873/j.issn.1000-1328.2014.04.012 |
HOU J W , ZHANG A B , ZHENG X Z , et al. On-orbit detection of FPGA single particle flip events[J]. Journal of Astronautics, 2014, 35 (4): 454- 458.
doi: 10.3873/j.issn.1000-1328.2014.04.012 |
|
17 |
邱金娟, 徐宏杰, 潘雄, 等. SRAM型FPGA单粒子翻转测试及加固技术研究[J]. 电光与控制, 2011, 18 (8): 84- 88.
doi: 10.3969/j.issn.1671-637X.2011.08.020 |
QIU J J , XU H J , PAN X , et al. Research on single particle flip test and reinforcement technology of SRAM FPGA[J]. Electrooptics and Control, 2011, 18 (8): 84- 88.
doi: 10.3969/j.issn.1671-637X.2011.08.020 |
|
18 |
宋凝芳, 朱明达, 潘雄. SRAM型FPGA单粒子效应试验研究[J]. 宇航学报, 2012, 33 (6): 836- 842.
doi: 10.3873/j.issn.1000-1328.2012.06.022 |
SONG N F , ZHU M D , PAN X . Experimental study on single particle effect of SRAM FPGA[J]. Journal of Astronautics, 2012, 33 (6): 836- 842.
doi: 10.3873/j.issn.1000-1328.2012.06.022 |
|
19 |
胡洪凯, 施蕾, 董暘暘, 等. SRAM型FPGA空间应用的抗单粒子翻转设计[J]. 航天器环境工程, 2014, 31 (5): 510- 515.
doi: 10.3969/j.issn.1673-1379.2014.05.010 |
HU H K , SHI L , DONG Y Y , et al. Anti-single particle flip design for SRAM FPGA space applications[J]. Spacecraft Environment Engineering, 2014, 31 (5): 510- 515.
doi: 10.3969/j.issn.1673-1379.2014.05.010 |
|
20 |
郑晓云, 陶淑苹, 冯汝鹏, 等. SRAM型FPGA抗单粒子翻转技术研究[J]. 电子测量技术, 2015, 38 (1): 59- 63.
doi: 10.3969/j.issn.1002-7300.2015.01.014 |
ZHENG X Y , TAO S P , FENG R P , et al. Research on anti-single particle flip technology of SRAM FPGA[J]. Electronic Measurement Technology, 2015, 38 (1): 59- 63.
doi: 10.3969/j.issn.1002-7300.2015.01.014 |
|
21 | 高鹏, 庞宗强, 周同. Virtex FPGA抗单粒子翻转技术[J]. 综合电子信息技术, 2014, 40 (4): 73- 76. |
GAO P , PANG Z Q , ZHOU T . Virtex FPGA anti-single particle flip technology[J]. Integrated Electronic Information Technology, 2014, 40 (4): 73- 76. | |
22 |
南希, 龚龙庆, 田卫平, 等. 基于FPGA的动态可重构系统设计与实现[J]. 现代电子技术, 2009, 293 (6): 4- 11.
doi: 10.3969/j.issn.1004-373X.2009.06.002 |
NAN X , GONG L Q , TIAN W P , et al. Design and implementation of dynamic reconfigurable system based on FPGA[J]. Modern Electrical Technology, 2009, 293 (6): 4- 11.
doi: 10.3969/j.issn.1004-373X.2009.06.002 |
|
23 | BOLCHINI C, MIELE A, SANTAGO M D. TMR and partial dynamic reconfiguration to mitigate SEU faults in FPGAs[C]//Proc. of the IEEE 22nd International Symposium on Defect and Fault-Tolerance in VLSI Systems, 2007: 87-95. |
24 | CARMICHAEL C, FULLER E, BLAIN P, et al. SEU mitigation techniques for Vitex FPGAs in space application[C]//Proc. of the 2nd Military and Aerospace Programmable Logic Devices, 1999: 24-34. |
25 | YUI C C, SWIFT G M, CARMICHAEL C, et al. SEU mitigation testing of Xilinx Virtex Ⅱ FPGAs[C]//Proc. of the IEEE Nuclear and Space Radiation Effects Conference, 2003: 92- 97. |
26 | XAPP779. Correcting single-event upsets in Virtex-Ⅱ platform FPGA configuration memory[S]. SAN Jose: Xilinx, 2007. |
27 | XAPP1088. Correcting single-event upsets in Virtex-4 FPGA configuration memory[S]. SAN Jose: Xilinx, 2009. |
28 | UG002. Virtex-Ⅱ platform FPGA user guide[S]. SAN Jose: Xilinx, 2004. |
29 | UG071. Virtex-4 FPGA configuration user guide[S]. SAN Jose: Xilinx, 2009. |
30 | UG191. Virtex-5 FPGA configuration user guide[S]. SAN Jose: Xilinx, 2020. |
31 | UG470.7. Series FPGA configuration user guide[S]. SAN Jose: Xilinx, 2018. |
[1] | Yingying JIANG, Shuguo PAN, Fei YE, Wang GAO, Chun MA, Hao WANG. Approach for detection of slowly growing fault based on robust estimation and improved AIME [J]. Systems Engineering and Electronics, 2022, 44(9): 2894-2902. |
[2] | Haobo FENG, Qiao HU, Zhenyi ZHAO. AUV swarm path planning based on elite family genetic algorithm [J]. Systems Engineering and Electronics, 2022, 44(7): 2251-2262. |
[3] | Tianyang GAO, Xiaoxuan HU, Wei XIA. Constellation autonomous mission planning algorithm based on distributed co-evolution [J]. Systems Engineering and Electronics, 2022, 44(5): 1600-1608. |
[4] | Yongqi GAO, Weiqiang MA, Linsen ZHANG, Peng WANG, Miao ZHAO. Distributed multi-AUVs cooperative search method [J]. Systems Engineering and Electronics, 2022, 44(5): 1670-1676. |
[5] | Lin HUANG, Li GONG, Wei JIANG, Kangbo WANG. Remaining useful life prediction based on multi-source information fusion and HMM [J]. Systems Engineering and Electronics, 2022, 44(5): 1747-1756. |
[6] | Jiachen LIU, Lei DONG, Changxiao ZHAO, Hongbing CHEN. Simulation and verification of DIMA dynamic reconfiguration based on formal method [J]. Systems Engineering and Electronics, 2022, 44(4): 1282-1290. |
[7] | Yi LIU, Wei ZHOU, Jihang JIN, Shaofeng BIAN, Shouzhou GU. RAIM algorithm for multiple gross errors detection based on Mean Shift model [J]. Systems Engineering and Electronics, 2022, 44(2): 644-650. |
[8] | Yu ZHANG, Kai WU, Jie GUO, Zhishan GE, Baochao ZHANG. Adaptive sequential track-association algorithm based on data quality assessment [J]. Systems Engineering and Electronics, 2022, 44(11): 3477-3485. |
[9] | Yanzhao LIU, Zhiqiu HUANG, Guohua SHEN, Jinyong WANG, Heng XU. Behavioral decision-making methods of autonomous vehicles based on decision tree and BN [J]. Systems Engineering and Electronics, 2022, 44(10): 3143-3154. |
[10] | Yufeng MA, Nan XIANG, Yajie DOU, Jiang JIANG, Kewei YANG, Yuejin TAN. Application and research of knowledge graph in military system engineering [J]. Systems Engineering and Electronics, 2022, 44(1): 146-153. |
[11] | Weiqiang MA, Yongqi GAO, Miao ZHAO. Global-best difference-mutation brain storm optimization algorithm [J]. Systems Engineering and Electronics, 2022, 44(1): 270-278. |
[12] | Minggang YU, Ming HE, Dongge ZHANG, Ziyu MA, Kai KANG. Strategy dominance condition of unmanned combat cluster based on multi-player public goods evolutionary game [J]. Systems Engineering and Electronics, 2021, 43(9): 2553-2561. |
[13] | Zhiwei CHEN, Jing WANG, Changchao GU, Jianchun ZHANG, Jilong ZHONG. Performance availability and resilience analysis of weapon system of systems considering dynamic reconfiguration [J]. Systems Engineering and Electronics, 2021, 43(8): 2347-2354. |
[14] | Peng WANG, Jiachen LIU, Lei DOND, Changxiao ZHAO. Task oriented DIMA dynamic reconfiguration strategy for civil aircraft [J]. Systems Engineering and Electronics, 2021, 43(6): 1618-1627. |
[15] | Zhaoli SONG, Xiang JIA, Bo GUO, Zhijun CHENG. Remaining useful life prediction of system based on Bayesian fusion and simulation [J]. Systems Engineering and Electronics, 2021, 43(6): 1706-1713. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||