Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (10): 2756-2765.doi: 10.12305/j.issn.1001-506X.2021.10.07
• New progress in electromagnetic scattering and inverse scattering • Previous Articles Next Articles
Tianjin LIU, Xiaojian XU*
Received:
2021-02-26
Online:
2021-10-01
Published:
2021-11-04
Contact:
Xiaojian XU
CLC Number:
Tianjin LIU, Xiaojian XU. Research on interactions between target and metal pylon in RCS measurement[J]. Systems Engineering and Electronics, 2021, 43(10): 2756-2765.
Table 1
Main scattering mechanisms of cylinder-pylon combination under different polarization modes"
极化方式 | 序号 | 位置计算 | 散射机理 |
VV | 1 | r1=-dc/2 | 前柱面的镜面反射 |
2 | r2=-dc/2+hc/2 | 前柱面向上和向下传播的表面行波 | |
3 | r3=dc/2 | 圆柱上下底面被末端边缘反射的表面行波 | |
4 | r4=(dc+hc)/2 | 先沿圆柱上下表面传播, 然后沿圆弧面从阴影区爬行向上下表面传播的表面波 | |
5 | r5=πdc/4 | 沿圆柱面经阴影区爬行的表面爬行波 | |
6 | r6=(dc+2hc)/2 | 先沿圆柱上下表面传播, 然后沿阴影区弧面爬行, 再沿上下表面传播, 最后沿前弧面上下传播的表面波 | |
7 | r7=xC | 金属支架C点绕射波 | |
8 | r8=xD | 金属支架下底面被D点反射的表面行波 | |
9 | r9=(xA-xC+l1)/2+xD | 先沿金属支架前缘传播, 然后沿支架下底面传播的表面行波 | |
10 | r10=(xA-xC+l1+hc)/2+xD | 先沿圆柱前弧面传播, 然后沿支架前缘传播, 最后沿支架下底面传播的表面行波 | |
HH | 1 | r1=-dc/2 | 前柱面的镜面反射 |
2 | r2=πdc/4 | 沿圆柱面经阴影区爬行的表面爬行波 | |
3 | r3=xC | 金属支架C点绕射波 | |
4 | r4=xD | 金属支架下底面被D点反射的表面行波 |
1 | KNOTT E F . Radar cross section measurements[M]. New York: Van Nostrand Reinhold, 1993. |
2 | BERRIE J A , WILSON G L . Design of target support columns using eps foam[J]. IEEE Antennas and Propagation Magazine, 2003, 45 (1): 198- 206. |
3 | KNOTT E F , SHAEFFER J F , TULEY M T . Radar cross section[M]. 2nd ed Raleigh: Scitech Publishing, 2004. |
4 | 黄培康, 殷红成, 许小剑. 雷达目标特性[M]. 北京: 电子工业出版社, 2005. |
HUANG P K , YIN H C , XU X J . Characteristics of radar targets[M]. Beijing: Publishing House of Electronics Industry, 2005. | |
5 | 许小剑. 雷达目标散射特性测量与处理新技术[M]. 北京: 国防工业出版社, 2017. |
XU X J . New techniques for radar target scattering signature measurement and processing[M]. Beijing: National Defense Industry Press, 2017. | |
6 | BURNS J W, LEBARON E I, FLISS G G. Characterization of target-pylon interactions in RCS measurements[C]//Proc. of the Antennas and Propagation Society International Symposium, 1997: 144-147. |
7 | POWERS D W. Characterization of the target-mount interaction in radar cross section measurement calibrations[D]. Ohio: Air Force Institute of Technology, 2004. |
8 |
XU X J , XIE Z J , HE F Y . Fast and accurate RCS calculation for squat cylinder calibrators[J]. IEEE Antennas and Propagation Magazine, 2015, 57 (1): 33- 41.
doi: 10.1109/MAP.2015.2401760 |
9 |
PETERS L . End-fire echo area of long, thin bodies[J]. IRE Transactions on Antennas and Propagation, 1958, 6 (1): 133- 139.
doi: 10.1109/TAP.1958.1144544 |
10 | HILLIARD D, KIM T, MENSA D. Scattering effects of traveling wave currents on linear features[C]//Proc. of the 37th Antenna Measurement Technique Association, 2015. |
11 | 张磊, 何思远, 朱国强, 等. 雷达目标三维散射中心位置正向推导和分析[J]. 电子与信息学报, 2018, 40 (12): 2854- 2860. |
ZHANG L , HE S Y , ZHU G Q , et al. Forward derivation and analysis for 3-D scattering center position of radar target[J]. Journal of Electronics & Information Technology, 2018, 40 (12): 2854- 2860. | |
12 |
NAISHADHAM K , PIOU J E . A robust state space model for the characterization of extended returns in radar target signatures[J]. IEEE Trans.on Antennas and Propagation, 2008, 56 (6): 1742- 1751.
doi: 10.1109/TAP.2008.916932 |
13 | HE F Y, XU X J. A comparative study of two target scattering center models[C]//Proc. of the IEEE 11th International Conference on Signal Processing, 2012: 1931-1935. |
14 |
YAMAGUCHI Y , MORIYAMA T , ISHIDO M , et al. Four-component scattering model for polarimetric SAR image decomposition[J]. IEEE Trans.on Geoscience and Remote Sensing, 2005, 43 (8): 1699- 1706.
doi: 10.1109/TGRS.2005.852084 |
15 | OPPENHEIM A V , SCHAFER R W . Discrete-time signal processing[M]. 3rd ed New Jersey: Prentice Hall, 2010. |
16 | 陈旭华, 易建政, 殷苏东. 雷达吸波材料反射系数的数值模拟[J]. 磁性材料及器件, 2010, 41 (3): 29- 32, 35. |
CHEN X H , YI J Z , YIN S D . Numerical simulation on reflection coefficients of radar absorbing material[J]. Journal of Magnetic Materials and Devices, 2010, 41 (3): 29- 32, 35. |
[1] | Qiankuo MA, Xiaokuan ZHANG, Binfeng ZONG, Jiahua XU, Yang WANG, Shuyu ZHENG. Dynamic RCS statistical characteristics analysis of stealth aircraft based on improved hybrid lognormal distribution model [J]. Systems Engineering and Electronics, 2022, 44(1): 34-39. |
[2] | Lixia YANG, Liufeng WANG, Wei CHEN, Yong BO. FDTD method of face-centered cube grid for electromagnetic scatteringcharacteristics of object [J]. Systems Engineering and Electronics, 2021, 43(10): 2718-2724. |
[3] | Shangsheng LI, Xukun WANG, Zhequan FU, Juntao ZHANG. Extraction of scattering center parameter and RCS reconstruction based on the improved TLS-ESPRIT algorithm of Hankel matrix [J]. Systems Engineering and Electronics, 2021, 43(1): 62-73. |
[4] | Shuyu ZHENG, Xiaokuan ZHANG, Binfeng ZONG. Extraction of scattering center parameters and reconstruction of RCS based on improved MUSIC algorithm [J]. Systems Engineering and Electronics, 2020, 42(1): 76-82. |
[5] | ZHANG Zhedong, LI Xin, ZHANG Jinpeng, ZHANG Yushi. Dynamic measurement method of target RCS based on attitude correction [J]. Systems Engineering and Electronics, 2019, 41(6): 1242-1248. |
[6] | . Review of controllable method of electromagnetic scattering characteristics of passive scattering elements [J]. Systems Engineering and Electronics, 2019, 41(4): 716-723. |
[7] | DANG Jiaojiao, LUO Yuan, SONG Zuxun, HU Chufeng, WANG Baoping. Near field bistatic scattering measurement for coupling targets [J]. Systems Engineering and Electronics, 2019, 41(4): 759-764. |
[8] | ZHANG Jun, HU Shengliang, YANG Qing, FAN Xueman. RCS statistical features and recognition model of air floating corner reflector [J]. Systems Engineering and Electronics, 2019, 41(4): 780-786. |
[9] | ZHANG Jun, HU Shengliang, WANG Pin, FAN Xueman. RCS model construction and analysis for corner reflector based on PO/AP algorithm [J]. Systems Engineering and Electronics, 2018, 40(7): 1478-1485. |
[10] | ZHAO Chunlei, WANG Yaliang, MAO Xingpeng, YU Changjun. Compressive sensing based two-dimensional DOA estimation for high frequency surface wave radar [J]. Systems Engineering and Electronics, 2017, 39(4): 733-741. |
[11] | XU Zhihao, LI Nanjing, HU Chufeng, DANG Jiaojiao. Antenna pattern correction in near-field scattering measurement [J]. Systems Engineering and Electronics, 2017, 39(11): 2399-2404. |
[12] | LIU Gen wang1,2, LIU Yong xin1, JI Yong gang2,3, WANG Chao2. Track association for highfrequency surface wave radar and AISbased on fuzzy double threshold theory [J]. Systems Engineering and Electronics, 2016, 38(3): 557-562. |
[13] | FAN Xue-man, HU Sheng-liang, LUO Ya-song, HE Jing-bo. Hybrid RCS evaluation method for maritime multi-corner reflectors [J]. Systems Engineering and Electronics, 2016, 38(11): 2462-2467. |
[14] | ZHAO Kong-rui, YU Chang-jun, LIU Ai-jun, JIAN Wei-le, QUAN Tai-fan. Target flight mode identification with HFSWR [J]. Systems Engineering and Electronics, 2015, 37(9): 2018-2022. |
[15] | CHU Xiao-liang1,2, ZHANG Jie1, WANG Shu-yao3, JI Yong-gang1, WANG Yi-ming1. Improved empirical model for significant wave height inversion from high-frequency surface wave radar [J]. Systems Engineering and Electronics, 2015, 37(8): 1793-1796. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||