Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (10): 2718-2724.doi: 10.12305/j.issn.1001-506X.2021.10.03
• New progress in electromagnetic scattering and inverse scattering • Previous Articles Next Articles
Lixia YANG1,2,*, Liufeng WANG1,2, Wei CHEN1,2, Yong BO1,2
Received:
2021-05-17
Online:
2021-10-01
Published:
2021-11-04
Contact:
Lixia YANG
CLC Number:
Lixia YANG, Liufeng WANG, Wei CHEN, Yong BO. FDTD method of face-centered cube grid for electromagnetic scatteringcharacteristics of object[J]. Systems Engineering and Electronics, 2021, 43(10): 2718-2724.
1 |
YEE K S . Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Trans.on Antennas Propagation, 1966, 14 (3): 302- 307.
doi: 10.1109/TAP.1966.1138693 |
2 | OSWALD N, MONISMITH D R. Radar cross sections of objects with simulated defects using the parallel FDTD method[C]//Proc. of the IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity, 2018. |
3 | SHIBAYAMA J, YAMAUCHI J, NAKANO H. Frequency-dependent FDTD analyses of terahertz plasmonic devices[C]//Proc. of the International Symposium on Antennas and Propagation, 2021: 457-458. |
4 | YAO H M, JIANG L J. Machine learning based neural network solving methods for the FDTD method[C]//Proc. of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2018: 2321-2322. |
5 | HE X B, WEI B, FAN K H. A hybrid FDTD algorithm without the limitation of cfl condition[C]//Proc. of the IEEE International Conference on Computational Electromagnetics, 2019. |
6 | LUEBBERS R, PENNEY C. Scattering from apertures in ground planes using FDTD[C]//Proc. of the IEEE Antennas and Propagation Society International Symposium, 1993: 822-825. |
7 |
CANGELLARIS A C . Numerical stability and numerical dispersion of a compact 2-D/FDTD method used for the dispersion analysis of waveguides[J]. IEEE Microwave and Guided Wave Letters, 1993, 3 (1): 3- 5.
doi: 10.1109/75.180672 |
8 | LUEBBERS R J, HUNSBERGER F P, KUNZ K S. FDTD formulation for frequency dependent permittivity[C]//Proc. of the Digest on Antennas and Propagation Society International Symposium, 1989: 50-53. |
9 | TIRKAS P A, BALANIS C A, RENAUT R A. Higher-order absorbing boundary conditions in FDTD method[C]//Proc. of the IEEE Antennas and Propagation Society International Symposium, 1998: 552-555. |
10 |
POTTER M E , LAMOUREUX M . An FDTD scheme on a face-centered-cubic (FCC) grid for the solution of the wave equation[J]. Journal of Comput. Physics, 2011, 230 (15): 6169- 6183.
doi: 10.1016/j.jcp.2011.04.027 |
11 | ZHANG Z Y, YANG L X, KONG W. Resonant frequency simulation of metal cavity based FCC-FDTD method[C]//Proc. of the IEEE International Conference on Microwave and Millimeter Wave Technology, 2016: 804-805. |
12 | LIU K B, AHMAD M, SHI L J, et al. CPML implementation for FCC-FDTD method[C]//Proc. of the 12th International Symposium on Antennas, Propagation and EM Theory, 2018. |
13 | 朱殊来. 电磁场中的FCC-FDTD算法[D]. 成都: 电子科技大学, 2020. |
ZHU S L. FCC-FDTD algorithm in electromagnetic field[D]. Chengdu: University of Electronic Science and Technology of China, 2020. | |
14 | SACKS Z S , KINGSLAND D M , LEE R , et al. A perfectly matched anisotropic absorber for use as an absorbing boundary condition[J]. IEEE Trans.on Antennas & Propagation, 1995, 43 (12): 1460- 1463. |
15 | GEDNEY S D . An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices[J]. IEEE Trans.on Antennas & Propagation, 1996, 44 (12): 1630- 1639. |
16 |
DING P P , WANG G F , LIN H , et al. Unconditionally stable FDTD formulation with UPML-ABC[J]. IEEE Microwave and Wireless Components Letters, 2006, 16 (4): 161- 163.
doi: 10.1109/LMWC.2006.872147 |
17 | MEHENNAOUI N, MERZOUKI A. SLIMANI D. 2D-FDTD-UPML simulation of wave propagation on dispersive media[C]//Proc. of the 3rd International Conference on Control, Engineering & Information Technology, 2015. |
18 |
FENG N X , WANG J G , ZHU J , et al. Switchable truncations between the 1st-and 2nd-order DZT-CFS-UPMLs for relevant FDTD problems[J]. IEEE Trans.on Antennas and Propagation, 2020, 68 (1): 360- 365.
doi: 10.1109/TAP.2019.2930118 |
19 | MAO Y F, ZHOU C M, ZHANG J. Implementation of UPML for weakly conditionally stable FDTD in periodic structures[C]//Proc. of the IEEE International Conference on Ultra-Wideband, 2010. |
20 |
LUEBBERS R . Lossy dielectrics in FDTD[J]. IEEE Trans.on Antennas and Propagation, 1993, 41 (11): 1586- 1588.
doi: 10.1109/8.267361 |
21 | DING J C, ZHAO Z Q, YANG Y H. Novel unconditionally stable ADI-FDTD method with low numerical dispersion[C]//Proc. of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2018: 1165-1166. |
22 | KIM H, KIM W, KOH I, et al. Dispersion and maximum time step of 2D ADI and CN ID-FDTD[C]//Proc. of the Workshop on Computational Electromagnetics in Time-Domain, 2007. |
23 | CHEN G Z, YANG S C, CUI S, et al. Numerical dispersion reduction scheme for arbitrary order FDTD method[C]//Proc. of the International Applied Computational Electromagnetics Society Symposium, 2019. |
24 | SU M, YI B, LIU P. Numerical dispersion analysis of an efficient unconditionally stable three-dimensional LOD-FDTD method[C]//Proc. of the IEEE International Conference on Signal Processing, Communication and Computing, 2013. |
25 |
SUN M K , TAM W Y . Low numerical dispersion two-dimensional (2, 4) ADI-FDTD method[J]. IEEE Trans.on Antennas and Propagation, 2006, 54 (3): 1041- 1044.
doi: 10.1109/TAP.2006.869940 |
26 | 张志扬. 基于面中心立方体(FCC)网格的FDTD算法的研究[D]. 镇江: 江苏大学, 2017. |
ZHANG Z Y. Research on FDTD algorithm based on face centered cube (FCC) grid[D]. Zhenjiang: Jiangsu University, 2017. | |
27 | 汪凯. 基于FCC-FDTD方法的NPML吸收边界条件和周期边界条件研究[D]. 镇江: 江苏大学, 2020. |
WANG K. Study on NPML absorption boundary conditions and periodic boundary conditions based on FCC-FDTD method[D]. Zhenjiang: Jiangsu University, 2020. | |
28 | 葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 西安: 西安电子科技大学出版社, 2011. |
GE D B , YAN Y B . Finite difference time domain method for electromagnetic wave[M]. Xi'an: Xidian University Press, 2011. | |
29 | 刘康兵. 基于面中心立方体(FCC)网格的电磁建模方法研究[D]. 镇江: 江苏大学, 2020. |
LIU K B. Research on electromagnetic modeling method based on face centered cube (FCC) grid[D]. Zhenjiang: Jiangsu University, 2020. | |
30 |
SHUM S M , LUK K M . An effective FDTD near-to-far field transformation for radiation pattern calculation[J]. Microwave and Optical Technology Letters, 1999, 20 (2): 129- 131.
doi: 10.1002/(SICI)1098-2760(19990120)20:2<129::AID-MOP14>3.0.CO;2-C |
31 | LI Y, LI W, YUAN L. Research on RCS characteristic of three kinds of metal plate[C]//Proc. of the IEEE 2nd International Conference on Cloud Computing and Intelligence Systems, 2012: 875-878. |
[1] | Qiankuo MA, Xiaokuan ZHANG, Binfeng ZONG, Jiahua XU, Yang WANG, Shuyu ZHENG. Dynamic RCS statistical characteristics analysis of stealth aircraft based on improved hybrid lognormal distribution model [J]. Systems Engineering and Electronics, 2022, 44(1): 34-39. |
[2] | Tianjin LIU, Xiaojian XU. Research on interactions between target and metal pylon in RCS measurement [J]. Systems Engineering and Electronics, 2021, 43(10): 2756-2765. |
[3] | Shangsheng LI, Xukun WANG, Zhequan FU, Juntao ZHANG. Extraction of scattering center parameter and RCS reconstruction based on the improved TLS-ESPRIT algorithm of Hankel matrix [J]. Systems Engineering and Electronics, 2021, 43(1): 62-73. |
[4] | Shuyu ZHENG, Xiaokuan ZHANG, Binfeng ZONG. Extraction of scattering center parameters and reconstruction of RCS based on improved MUSIC algorithm [J]. Systems Engineering and Electronics, 2020, 42(1): 76-82. |
[5] | ZHANG Zhedong, LI Xin, ZHANG Jinpeng, ZHANG Yushi. Dynamic measurement method of target RCS based on attitude correction [J]. Systems Engineering and Electronics, 2019, 41(6): 1242-1248. |
[6] | . Review of controllable method of electromagnetic scattering characteristics of passive scattering elements [J]. Systems Engineering and Electronics, 2019, 41(4): 716-723. |
[7] | DANG Jiaojiao, LUO Yuan, SONG Zuxun, HU Chufeng, WANG Baoping. Near field bistatic scattering measurement for coupling targets [J]. Systems Engineering and Electronics, 2019, 41(4): 759-764. |
[8] | ZHANG Jun, HU Shengliang, YANG Qing, FAN Xueman. RCS statistical features and recognition model of air floating corner reflector [J]. Systems Engineering and Electronics, 2019, 41(4): 780-786. |
[9] | ZHANG Jun, HU Shengliang, WANG Pin, FAN Xueman. RCS model construction and analysis for corner reflector based on PO/AP algorithm [J]. Systems Engineering and Electronics, 2018, 40(7): 1478-1485. |
[10] | XU Zhihao, LI Nanjing, HU Chufeng, DANG Jiaojiao. Antenna pattern correction in near-field scattering measurement [J]. Systems Engineering and Electronics, 2017, 39(11): 2399-2404. |
[11] | FAN Xue-man, HU Sheng-liang, LUO Ya-song, HE Jing-bo. Hybrid RCS evaluation method for maritime multi-corner reflectors [J]. Systems Engineering and Electronics, 2016, 38(11): 2462-2467. |
[12] | ZHANG Hao-jie, CHEN Jie, YANG Wei, LI Jing-wen, ZENG Hong-cheng. High-precision simulation of SAR echo using FDTD method [J]. Systems Engineering and Electronics, 2016, 38(1): 45-52. |
[13] | LIU Jia, FANG Ning, XIE Yong-jun, WANG Bao-fa. Dynamic target RCS characteristic analysis under the influence of attitude perturbation [J]. Systems Engineering and Electronics, 2015, 37(4): 775-781. |
[14] | WANG Cong-si1,2,WANG Wei-feng,WANG Wei,KANG Ming-kui,DUAN Bao-yan,LIU Xin,HAN Ru-bing. Integrated analysis of radiation and scattering performances of active phased array antennas with element position errors [J]. Systems Engineering and Electronics, 2014, 36(10): 1893-1898. |
[15] | LIU He-ming, DING Da-li, HUANG Chang-qiang, HUANG Han-qiao, WANG You. UCAV low observable attacking trajectory planning based on adaptive pseudospectral method [J]. Journal of Systems Engineering and Electronics, 2013, 35(1): 78-84. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||