Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (5): 1420-1429.doi: 10.12305/j.issn.1001-506X.2021.05.32
• Reliability • Previous Articles Next Articles
Jianjun WANG*(), Guikang YANG(
), Zebiao FENG(
)
Received:
2020-02-24
Online:
2021-05-01
Published:
2021-04-27
Contact:
Jianjun WANG
E-mail:jjwang@njust.edu.cn;1048298370@qq.com;317321361@qq.com
CLC Number:
Jianjun WANG, Guikang YANG, Zebiao FENG. Bayesian modeling and analysis of accelerated life data[J]. Systems Engineering and Electronics, 2021, 43(5): 1420-1429.
Table 1
Model assumptions for the five kinds of methods"
方法 | 尺度参数 | 形状参数 |
文献[ | log ηi=θ0+θ1 Volt+θ2 Temp | 常数 |
文献[ | log ηi=θ0+θ1 Volt+θ2 Temp+μi | 常数 |
文献[ | log ηi=θ0+θ1 Volt+θ2 Temp | log βi=γ0+γ1 Volt+γ2 Temp |
文献[ | log ηi=θ0+θ1 Volt+θ2 Temp+μi | log βi=γ0+γ1 Volt+γ2 Temp |
本文方法 | log ηi=θ0+θ1 Volt+θ2 Temp+μi | log βi=γ0+γ1 Volt+γ2 Temp+εi |
Table 2
Test design and lifetime data"
试验次序 | 温度/℃ | 电压/V | 寿命数据 | |||||||
1 | 170 | 200 | 439 | 904 | 1 092 | 1 105 | 1 105* | 1 105* | 1 105* | 1 105* |
2 | 170 | 250 | 572 | 690 | 904 | 1 090 | 1 090* | 1 090* | 1 090* | 1 090* |
3 | 170 | 300 | 315 | 315 | 439 | 628 | 628* | 628* | 628* | 628* |
4 | 170 | 350 | 258 | 258 | 347 | 588 | 588* | 588* | 588* | 588* |
5 | 180 | 200 | 959 | 1 065 | 1 065 | 1 087 | 1 087* | 1 087* | 1 087* | 1 087* |
6 | 180 | 250 | 216 | 315 | 455 | 473 | 473* | 473* | 473* | 473* |
7 | 180 | 300 | 241 | 315 | 332 | 380 | 380* | 380* | 380* | 380* |
8 | 180 | 350 | 241 | 241 | 435 | 455 | 455* | 455* | 455* | 455* |
Table 3
Parameter estimation of model Ⅰ~Ⅴ"
参数 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ |
θ0 | 13.407 0 | 13.519 70 | 13.216 3 | 15.646 50 | 15.000 0 |
θ1 | -0.028 9 | -0.029 60 | -0.028 0 | -0.043 20 | -0.039 5 |
θ2 | -0.005 9 | -0.005 90 | -0.005 8 | -0.005 20 | -0.005 1 |
γ0 | - | - | 0.419 7 | -5.700 70 | -12.190 0 |
γ1 | - | - | 0.008 2 | 0.047 20 | 0.110 5 |
γ2 | - | - | -0.003 1 | -0.004 90 | -0.013 1 |
σμ | - | 0.047 46 | - | 0.184 14 | 0.262 7 |
σε | - | - | - | - | 0.400 8 |
Table 4
Estimation of scale parameters and shape parameters of model Ⅰ~Ⅴ"
试验次序 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | |||||||||
尺度参数 | 形状参数 | 尺度参数 | 形状参数 | 尺度参数 | 形状参数 | 尺度参数 | 形状参数 | 尺度参数 | 形状参数 | |||||
1 | 1 496.77 | 2.75 | 1 492.86 | 2.78 | 1 470.850 | 3.37 | 1 432.060 | 3.80 | 1 397.0 | 3.77 | ||||
2 | 1 113.79 | 2.75 | 1 112.08 | 2.78 | 1 100.570 | 2.89 | 1 104.550 | 2.98 | 1 244.0 | 3.23 | ||||
3 | 828.80 | 2.75 | 828.43 | 2.78 | 823.510 | 2.48 | 851.940 | 2.33 | 828.3 | 2.56 | ||||
4 | 616.73 | 2.75 | 617.13 | 2.78 | 616.195 | 2.13 | 657.105 | 1.82 | 723.0 | 2.01 | ||||
5 | 1 121.00 | 2.75 | 1 110.27 | 2.78 | 1 111.480 | 3.66 | 929.870 | 6.10 | 1 198.0 | 5.32 | ||||
6 | 834.20 | 2.75 | 827.08 | 2.78 | 831.670 | 3.14 | 717.210 | 4.77 | 608.8 | 4.30 | ||||
7 | 620.75 | 2.75 | 616.12 | 2.78 | 622.300 | 2.70 | 553.189 | 3.73 | 488.6 | 3.87 | ||||
8 | 461.92 | 2.75 | 458.97 | 2.78 | 465.640 | 2.31 | 426.676 | 2.92 | 503.5 | 3.27 |
Table 5
Percentile estimates and confidence intervals for model Ⅰ~Ⅴ"
次序 | 模型 | t.01 | t.05 | t.1 | t.5 |
Ⅰ | 280.76[179.5, 475.3] | 508.00[367.1, 728.4] | 660.08[498.4, 882.5] | 1 309.92[1 026.5, 1 576.8] | |
Ⅱ | 284.51[183.2, 516.9] | 511.90[367.7, 768.7] | 663.50[491.0, 926.4] | 1 308.16[972.5, 1 625.1] | |
1 | Ⅲ | 375.80[200.1, 675.40] | 609.45[405.9, 882.8] | 754.52[550.8, 1 003.7] | 1 319.33[1 080.2, 1 531.2] |
Ⅳ | 427.31[243.2, 779.3] | 655.91[452.0, 965.4] | 792.55[589.8, 1 067.3] | 1 300.51[1 081.9, 1 492.2] | |
Ⅴ | 381.80[119.9, 635.9] | 591.50[287.4, 859.5] | 722.60[416.9, 994.9] | 1 250.00[951.3, 1 703.0] | |
Ⅰ | 208.92[137.1, 344.4] | 378.02[285.5, 520.7] | 491.18[389.9, 629.3] | 974.750[821.5, 1 100.1] | |
Ⅱ | 211.94[142.2, 372.9] | 381.33[284.3, 550.1] | 494.26[383.8, 659.9] | 974.490[772.0, 1 138.9] | |
2 | Ⅲ | 224.37[149.5, 374.1] | 394.17[302.7, 544.1] | 505.54[408.7, 645.6] | 969.600[840.4, 1 074.5] |
Ⅳ | 235.33[158.5, 420.6] | 407.01[310.8, 587.7] | 518.42[417.0, 682.6] | 976.520[835.1, 1 098.4] | |
Ⅴ | 288.00[91.98, 487.9] | 475.50[234.6, 706.3] | 596.60[347.7, 843.8] | 1 101.00[833.9, 1 475.0] | |
Ⅰ | 155.46[102.3, 258.1] | 281.29[211.9, 389.1] | 365.50[289.9, 470.4] | 725.340[603.9, 829.80] | |
Ⅱ | 157.88[106.1, 275.5] | 284.07[213.7, 407.7] | 368.19[287.7, 488.5] | 725.930[576.9, 847.60] | |
3 | Ⅲ | 129.05[73.20, 239.5] | 248.86[171.6, 368.1] | 332.59[248.6, 449.2] | 710.460[582.4, 826.90] |
Ⅳ | 117.99[66.60, 249.3] | 237.72[163.6, 379.7] | 323.90[242.1, 459.4] | 727.790[594.2, 846.80] | |
Ⅴ | 131.80[33.08, 238.7] | 246.30[104.9, 378.9] | 327.20[168.6, 481.1] | 708.500[493.8, 997.90] | |
Ⅰ | 115.68[74.20, 197.6] | 209.32[150.7, 302.8] | 271.98[203.7, 366.0] | 539.740[416.0, 666.00] | |
Ⅱ | 117.61[77.10, 211.6] | 211.61[152.6, 317.2] | 274.28[203.9, 382.3] | 540.770[403.4, 668.30] | |
4 | Ⅲ | 71.060[19.20, 190.3] | 152.77[66.50, 285.3] | 214.20[113.5, 345.9] | 518.770[381.6, 660.30] |
Ⅳ | 52.470[11.80, 181.9] | 128.49[49.30, 278.2] | 190.83[92.50, 341.3] | 537.250[400.6, 664.50] | |
Ⅴ | 72.860[2.948, 183.1] | 152.80[19.28, 304.5] | 216.20[49.85, 387.1] | 584.000[371.1, 925.40] | |
Ⅰ | 210.28[132.6, 362.9] | 380.48[270.6, 553.1] | 494.38[367.4, 674.3] | 981.100[750.7, 1 210.8] | |
Ⅱ | 211.60[135.6, 382.9] | 380.71[271.1, 572.8] | 493.46[363.7, 687.2] | 972.910[723.7, 1 208.5] | |
5 | Ⅲ | 316.52[153.4, 571.1] | 493.95[311.5, 723.4] | 601.23[421.2, 809.3] | 1 005.63[798.2, 1 202.1] |
Ⅳ | 437.26[284.6, 654.3] | 571.27[431.2, 745.7] | 642.87[514.2, 794.1] | 875.620[730.3, 997.60] | |
Ⅴ | 481.30[203.9, 713.6] | 658.80[373.1, 877.8] | 759.00[483.1, 961.8] | 1 110.00[923.6, 1 353.0] | |
Ⅰ | 156.48[102.4, 261.0] | 283.13[211.3, 394.2] | 367.89[289.6, 475.7] | 730.060[605.7, 836.80] | |
Ⅱ | 157.63[104.6, 277.4] | 283.61[210.3, 409.4] | 367.59[284.7, 490.6] | 724.750[574.3, 846.80] | |
6 | Ⅲ | 192.40[122.1, 325.4] | 323.19[239.6, 449.7] | 406.39[320.9, 522.5] | 740.110[633.5, 827.00] |
Ⅳ | 273.33[203.4, 404.7] | 384.71[316.7, 4912.0] | 447.40[382.0, 539.1] | 664.150[582.0, 723.10] | |
Ⅴ | 194.60[87.61, 283.3] | 287.70[174.5, 388.3] | 343.30[235.7, 453.1] | 553.300[424.6, 798.40] | |
Ⅰ | 116.44[76.80, 193.3] | 210.68[159.8, 290.7] | 273.75[218.2, 351.1] | 543.260[454.8, 615.10] | |
Ⅱ | 117.42[78.50, 205.3] | 211.27[157.0, 304.0] | 273.83[213.6, 365.2] | 539.890[427.0, 630.20] | |
7 | Ⅲ | 113.00[70.70, 196.0] | 206.82[151.5, 293.9] | 270.11[211.2, 353.7] | 543.210[453.8, 622.80] |
Ⅳ | 161.14[117.7, 251.7] | 249.46[200.1, 331.0] | 302.57[251.9, 376.4] | 501.410[422.2, 565.50] | |
Ⅴ | 139.70[58.35, 215.1] | 214.60[127.6, 292.4] | 260.60[172.0, 343.6] | 440.000[334.6, 598.90] | |
Ⅰ | 86.640[56.00, 147.0] | 156.77[114.6, 224.4] | 203.71[154.6, 271.2] | 404.260[317.0, 489.10] | |
Ⅱ | 87.470[57.30, 157.5] | 157.38[113.6, 235.9] | 203.99[151.6, 283.7] | 402.190[298.4, 497.30] | |
8 | Ⅲ | 63.760[23.80, 148.3] | 128.97[68.50, 219.8] | 176.05[108.0, 265.6] | 397.420[301.1, 493.50] |
Ⅳ | 88.150[41.70, 179.6] | 154.13[94.00, 243.2] | 197.27[134.4, 280.3] | 376.300[288.6, 454.50] | |
Ⅴ | 118.10[27.33, 216.2] | 192.90[75.76, 296.6] | 241.30[110.4, 352.8] | 444.800[325.4, 602.80] |
1 | HEJAZI T H , SEYYED ESFAHANI M , et al. Robust design of accelerated life testing and reliability optimization: response surface methodology approach[M]. London: Springer, 2015. |
2 |
LV S S , NIU Z W , QU L , et al. Reliability modeling of accelerated life tests with both random effects and nonconstant shape parameters[J]. Quality Engineering, 2015, 27 (3): 329- 340.
doi: 10.1080/08982112.2015.1037393 |
3 |
JOHNSON T H , MEDLIN R M , FREEMAN L J , et al. Power approximations for failure-time regression models[J]. Quality and Reliability Engineering International, 2019, 35 (6): 1666- 1675.
doi: 10.1002/qre.2467 |
4 |
MEEKER W Q , ESCOBAR L A . A review of recent research and current issues in accelerated testing[J]. International Statistical Review Internationale, 1993, 61 (1): 147- 168.
doi: 10.2307/1403600 |
5 | MEEKER W Q , ESCOBAR L A . Statistical methods for reliability data[M]. New York: John Wiley & Sons, 2014. |
6 | NELSON W B . Accelerated testing: statistical models, test plans, and data analysis[M]. New York: John Wiley & Sons, 2009. |
7 | LAWLESS J F . Statistical models and methods for lifetime data[M]. New York: John Wiley & Sons, 2011. |
8 |
FANG J T , HE Z , ZHANG Z M , et al. Reliability improvement of diamond drill bits using design of experiments[J]. Quality Engineering, 2018, 30 (2): 339- 350.
doi: 10.1080/08982112.2017.1311414 |
9 |
ZELEN M . Factorial experiments in life testing[J]. Technometrics, 1959, 1 (3): 269- 288.
doi: 10.1080/00401706.1959.10489862 |
10 |
FREEMAN L J , VINING G G . Reliability data analysis for life test designed experiments with sub-sampling[J]. Quality and Reliability Engineering International, 2013, 29 (4): 509- 519.
doi: 10.1002/qre.1398 |
11 |
LV S S , WANG Z Q , HE Z , et al. Impact of censoring types on the two-stage method for analyzing reliability experiments with random effects[J]. Quality Engineering, 2019, 31 (2): 302- 313.
doi: 10.1080/08982112.2018.1513528 |
12 |
KENSLER J L K , FREEMAN L J , VINING G G . A practitioner's guide to analyzing reliability experiments with random blocks and subsampling[J]. Quality Engineering, 2014, 26 (3): 359- 369.
doi: 10.1080/08982112.2014.887101 |
13 |
MEDLIN R M , FREEMAN L J , KENSLER J L K , et al. Analysis of split-plot reliability experiments with subsampling[J]. Quality and Reliability Engineering International, 2019, 35 (3): 738- 749.
doi: 10.1002/qre.2394 |
14 | XIAO L , TANG L C . Analysis of reliability experiments with blocking[J]. Quality Technology & Quantitative Management, 2013, 10 (2): 141- 160. |
15 |
LEON R V , RAMACHANDRAN R , ASHBY A J , et al. Bayesian modeling of accelerated life tests with random effects[J]. Journal of Quality Technology, 2007, 39 (1): 3- 16.
doi: 10.1080/00224065.2007.11917669 |
16 |
WANG G D , SHAO L , CHEN H G , et al. Calculating confidence intervals for percentiles of accelerated life tests with subsampling[J]. Quality Technology and Quantitative Management, 2019, 16 (4): 424- 438.
doi: 10.1080/16843703.2018.1448693 |
17 | MEETER C A , MEEKER W Q . Optimum accelerated life tests wth a nonconstant scale parameter[J]. Technometrics, 1994, 36 (1): 71- 83. |
18 | 王炳兴. Weibull分布场合具有非常数形状参数恒加试验的参数估计[J]. 应用数学学报, 2004, 27 (1): 44- 51. |
WANG B X . Parameter estimation of constant acceleration test with non-constant shape parameters for Weibull distribution[J]. Journal of Applied Mathematics, 2004, 27 (1): 44- 51. | |
19 |
WANG W , KECECIOGLU D B . Fitting the Weibull log-linear model to accelerated life-test data[J]. IEEE Trans.on Reliability, 2000, 49 (2): 217- 223.
doi: 10.1109/24.877341 |
20 | WANG G D , NIU Z W , HE Z . Accelerated lifetime data analysis with a nonconstant shape parameter[J]. Mathematical Problems in Engineering, 2015, 2015, 1- 8. |
21 |
LV S S , NIU Z W , WANG G D , et al. Lower percentile estimation of accelerated life tests with nonconstant scale parameter[J]. Quality and Reliability Engineering International, 2017, 33 (7): 1437- 1446.
doi: 10.1002/qre.2116 |
22 | LV S S, NIU Z W, HE Z, et al. Estimation of lower percentiles under a Weibull distribution[C]//Proc. of the IEEE 1st International Conference on Reliability Systems Engineering, 2015. |
23 | PHAM H . Recent advances in reliability and quality in design[M]. London: Springer, 2008. |
24 |
JOSHI M , SEIDELMORGENSTERN A , KREMLING A . Exploiting the bootstrap method for quantifying parameter confidence intervals in dynamical systems[J]. Metabolic Engineering, 2006, 8 (5): 447- 455.
doi: 10.1016/j.ymben.2006.04.003 |
25 | FREEMAN L J. Statistical methods for reliability data from designed experiments[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2010. |
26 | WU C F J , HAMADA M S . Experiments: planning, analysis, and optimization[M]. New York: John Wiley & Sons, 2011. |
27 | WANG J J , MA Y Z , OUYANG L H , et al. Bayesian modeling and optimization for multi-response surfaces[J]. Computers & Industrial Engineering, 2020, 142, 106357. |
28 | WANG J J , MAO T , TU Y L . Simultaneous multi-response optimisation for parameter and tolerance design using Bayesian modelling method[J]. International Journal of Production Research, 2020, 2, 1- 25. |
29 | 王国东. 面向可靠性评估和改进的试验设计和分析[D]. 天津: 天津大学, 2014. |
WANG G D. Design and analysis of experiments for reliability evaluation and improvement[D]. Tianjin: Tianjin University, 2014. | |
30 |
WANG G D , NIU Z W , LV S S , et al. Bootstrapping analysis of lifetime data with subsampling[J]. Quality and Reliability Engineering International, 2016, 32 (5): 1945- 1953.
doi: 10.1002/qre.1925 |
31 |
FREEMAN L J , MEDLIN R M , JOHNSON T H . Challenges and new methods for designing reliability experiments[J]. Quality Engineering, 2019, 31 (1): 108- 121.
doi: 10.1080/08982112.2018.1546394 |
32 |
MITTMAN E T , LEWISBECK C , MEEKER W Q , et al. A hierarchical model for heterogenous reliability field data[J]. Technometrics, 2019, 61 (3): 354- 368.
doi: 10.1080/00401706.2018.1518273 |
33 |
LV S S , HE Z , VINING G G . Simultaneous optimization of quality and reliability characteristics through designed experiment[J]. Quality Engineering, 2017, 29 (3): 344- 357.
doi: 10.1080/08982112.2017.1294696 |
[1] | Zhaoli SONG, Xiang JIA, Bo GUO, Zhijun CHENG. Remaining useful life prediction of system based on Bayesian fusion and simulation [J]. Systems Engineering and Electronics, 2021, 43(6): 1706-1713. |
[2] | Leilei ZHANG, Long XIE, Xu GAO, Tianyu SUN, Feng ZHANG. Research on synthetic reliability assessment method for high-value ammunition [J]. Systems Engineering and Electronics, 2021, 43(11): 3399-3404. |
[3] | Zhiyuan YANG, Jianmin ZHAO, Liying LI, Zhonghua CHENG, Chiming GUO. Reliability analysis and residual life estimation of bivariate dependent degradation system [J]. Systems Engineering and Electronics, 2020, 42(11): 2661-2668. |
[4] | CAI Zhongyi, CHEN Yunxiang, GUO Jiansheng, WANG Zezhou, Deng Lin. Remaining lifetime prediction for device with measurement error and random effect [J]. Systems Engineering and Electronics, 2019, 41(7): 1658-1664. |
[5] | WANG Zezhou, CHEN Yunxiang, CAI Zhongyi, XIANG Huachun, LUO Chengkun. Real-time prediction of remaining useful lifetime for equipment with random failure threshold [J]. Systems Engineering and Electronics, 2019, 41(5): 1162-1168. |
[6] | ZHANG Kai, XIONG Jiajun, LAN Xuhui, CHEN Xin. Bayesian handover method of hypersonic vehicle in detection blind zone [J]. Systems Engineering and Electronics, 2019, 41(3): 493-499. |
[7] | GAI Bingliang, TENG Kenan, TANG Jinguo, WANG Haowei, SUN Yuan. Reliability analysis for bivariate degradation process based on Mahalanobis distance [J]. Systems Engineering and Electronics, 2019, 41(3): 686-692. |
[8] | QI Xiaoming, WEI Ruixuan, SHEN Dong, RU Changjian, ZHOU Huan. Distributed cooperative search methods of multiUAV #br# based on prediction of moving targets [J]. Systems Engineering and Electronics, 2014, 36(12): 2417-2425. |
[9] | XIA Shuang-zhi, LIU Hong-wei, JIU Bo. New approach to determine detection threshold for Bayesian track-before-detect [J]. Journal of Systems Engineering and Electronics, 2012, 34(7): 1305-1311. |
[10] | PENG Bao-hua,ZHOU Jing-lun,SUN Quan,FENG Jing,JIN Guang. Residual lifetime prediction of products based on fusion of degradation data and lifetime data [J]. Journal of Systems Engineering and Electronics, 2011, 33(5): 1073-. |
[11] | BI Wen-jie, CHEN Xiao-hong. Risky multicriteria group decision approach based on Bayesian theory and Monte Carlo simulation [J]. Journal of Systems Engineering and Electronics, 2010, 32(5): 971-975. |
[12] | LI Hai-feng, LU Min-yan, WANG Xue-cheng. Modified Jelinski-Moranda model with right-censored data [J]. Journal of Systems Engineering and Electronics, 2009, 31(6): 1496-1499. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||