Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (5): 1430-1436.doi: 10.12305/j.issn.1001-506X.2021.05.33
• Reliability • Previous Articles
Hongli ZHAO(), Tianming CHEN*(
), Nie ZHENG(
)
Received:
2020-06-12
Online:
2021-05-01
Published:
2021-04-27
Contact:
Tianming CHEN
E-mail:henleytrent@163.com;caucchentianming@163.com;2018012066@cauc.edu.cn
CLC Number:
Hongli ZHAO, Tianming CHEN, Nie ZHENG. Engine life prediction based on multi-stage similarity of comprehensive index[J]. Systems Engineering and Electronics, 2021, 43(5): 1430-1436.
Table 1
Analysis of sensor parameters"
序号 | 符号 | 具体含义 |
1 | T2 | 风扇进口总温 |
2 | T24 | 低压压气机出口总温 |
3 | T30 | 高压压气机出口总温 |
4 | T50 | 低压涡轮出口总温 |
5 | P2 | 风扇进口压力 |
6 | P15 | 外涵道道总压 |
7 | P30 | 高压压气机出口总压 |
8 | Nf | 未修正的风扇转速 |
9 | Nc | 未修正的核心机转速 |
10 | epr | 发动机压力比 |
11 | Ps30 | 高压压气机出口静压 |
12 | Phi | 燃油流量和P30比值 |
13 | NRf | 风扇修正转速 |
14 | NRc | 核心机修正转速 |
15 | BPR | 涵道比 |
16 | farB | 燃烧室油气比 |
17 | htBleed | 引气焓值 |
18 | Nf_dmd | 风扇转速设定值 |
19 | PCNfR_dmd | 风扇修正转速设定值 |
20 | W31 | 高压涡轮引气量 |
21 | W32 | 低压涡轮引气量 |
1 | 尉询楷, 杨立, 刘芳, 等. 航空发动机预测与健康管理[M]. 北京: 国防工业出版社, 2014: 132- 133. |
WEI X K , YANG L , LIU F , et al. Aer engine prediction and health management[M]. Beijing: National Defense Industry Press, 2014: 132- 133. | |
2 |
ELSHEIKH A , YACOUT S , OUALI M S . Bidirectional handshaking LSTM for remaining useful life prediction[J]. Neurocomputing, 2019, 323, 148- 156.
doi: 10.1016/j.neucom.2018.09.076 |
3 | PENG Y Z , WANG Y , ZI Y Y . Switching state-space degradation model with recursive filter/smoother for prognostics of remaining useful life[J]. IEEE Trans.on Industrial Informatics, 2018, 15 (2): 822- 832. |
4 |
LEI Y G , LI N P , GONTARZ S , et al. A model-based method for remaining useful life prediction of machinery[J]. IEEE Trans.on Reliability, 2016, 65 (3): 1314- 1326.
doi: 10.1109/TR.2016.2570568 |
5 |
LI N , LEI Y , LIN J , et al. An improved exponential model for predicting remaining useful life of rolling element bearings[J]. IEEE Trans.on Industrial Electronics, 2015, 62 (12): 7762- 7773.
doi: 10.1109/TIE.2015.2455055 |
6 | PECHT M . Prognostics and health management of slsctronics[M]. New Jersey: Wiley Online Library, 2008. |
7 | ELLEFSEN A L , BJORLYKHAUG E , ESOY V , et al. Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture[J]. Reliability Engineering & System Safety, 2019, 183, 240- 251. |
8 | 赵广社, 吴思思, 荣海军. 多源统计数据驱动的航空发动机剩余寿命预测方法[J]. 西安交通大学学报, 2017, 51 (11): 150- 155. |
ZHAO G S , WU S S , RONG H J . A multi-source statics data-driven method for remaining useful life prediction of aircraft engine[J]. Journal of Xi'an Jiaotong University, 2017, 51 (11): 150- 155. | |
9 | 黄亮, 刘君强, 贡英杰. 基于一致性检验的航空发动机剩余寿命预测[J]. 系统工程与电子技术, 2018, 40 (12): 2736- 2742. |
HUANG L , LIU J Q , GONG Y J . Residual lifetime prediction of aeroengines based on the consistency test[J]. Systems Engi-neering and Electronics, 2018, 40 (12): 2736- 2742. | |
10 | 车畅畅, 王华伟, 倪晓梅, 等. 基于改进GRU的航空发动机剩余寿命预测[J]. 航空计算技术, 2020, 50 (1): 13- 16. |
CHE C C , WANG H W , NI X M , et al. Residual life prediction of aeroengine based on improved GRU[J]. Aeronautical Computing Technique, 2020, 50 (1): 13- 16. | |
11 | 宋亚, 夏唐斌, 郑宇, 等. 基于Autoencoder-BLSTM的涡扇发动机剩余寿命预测[J]. 计算机集成制造系统, 2019, 25 (7): 1611- 1619. |
SONG Y , XIA T B , ZHENG Y , et al. Remaining useful life prediction of turbofan engine based on autoencoder-BLSTM[J]. Computer Integrated Manufacturing Systems, 2019, 25 (7): 1611- 1619. | |
12 | WANG T Y. Trajectory similarity based prediction for remaining useful life estimation[D]. Cincinnati: University of Cincinnati, 2010. |
13 |
SHI J M , LI Y X , WANG G , et al. Health index synthetization and remaining useful life estimation for turbofan engines based on run-to-failure datasets[J]. Maintenance and Reliability, 2016, 18 (4): 621- 631.
doi: 10.17531/ein.2016.4.18 |
14 | 张妍, 王村松, 陆宁云, 等. 基于退化特征相似性的航空发动机寿命预测[J]. 系统工程与电子技术, 2019, 41 (6): 1414- 1421. |
ZANG Y , WANG C S , LU N Y , et al. Remaining useful life prediction for aero-engine based on the similarity of degradation characteristics[J]. Systems Engineering and Electronics, 2019, 41 (6): 1414- 1421. | |
15 | 曹惠玲, 崔科璐, 梁佳旺. 基于多参数融合相似的民航发动机寿命预测[J]. 中国机械工程, 2020, 31 (7): 781- 787. |
CAO H L , CUI K L , LIANG J W . Multi-parameter fusion similarity-based method for remaining useful life prediction of civil aviation engine[J]. China Mechanical Engineering, 2020, 31 (7): 781- 787. | |
16 |
YU W M , KIM Y , MECHEFSKE C . An improved similarity-based prognostic algorithm for RUL estimation using an RNN autoencoder scheme[J]. Reliability Engineering and System Safety, 2020, 199, 106926.
doi: 10.1016/j.ress.2020.106926 |
17 | GUO L, LEI Y G, LI N P, et al. Deep convolution feature learning for health indicator construction of bearings[C]//Proc. of the Prognostics and System Health Management Conference, 2017. |
18 |
LIAO L X , JIN W J , PAVEL R . Enhanced restricted boltzmann machine with prognosability regularization for prognostics and health assessment[J]. IEEE Trans.on Industrial Electro-nics, 2016, 63 (11): 7076- 7083.
doi: 10.1109/TIE.2016.2586442 |
19 |
HOU M R , PI D C , LI B R . Similarity-based deep learning approach for remaining useful life prediction[J]. Measurement, 2020, 159, 107788.
doi: 10.1016/j.measurement.2020.107788 |
20 | 赵洪利, 张猛. 基于随机维纳过程的航空发动机性能衰退研究[J]. 推进技术, 2021, 42 (3): 488- 494. |
ZHAO H L , ZHANG M . Research on performance degradation of aeroengines baesd on stochastic wiener process[J]. Journal of Propulsion Technology, 2021, 42 (3): 488- 494. | |
21 | Department of Denfense. MIL-HDBK-516C ariworthiness certification criteria[S]. Washington: Department of Defense, 2014. |
22 | BENZAKEIN M. Propulsion strategy for the 21st century-a vision into the future[C]//Proc. of the ISABE, 2001. |
23 | Department of Denfense. JSSG 2007B Joint service specification guide: engines, aircraft, turbine[S]. Washington: Department of defense, 2008: 1-575. |
24 | Federal Aviation Administration. FAR 33 airworthiness standards: aircraft engine[S]. Washington: Federal Aviation Administration, 1984. |
25 |
YU W , KIM I Y , MECHEFSKE C K . Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme[J]. Mechanical Systems and Signal Processing, 2019, 129, 764- 780.
doi: 10.1016/j.ymssp.2019.05.005 |
26 |
ZHANG Q , TSE W T , WAN X , et al. Remaining useful life estimation for mechanical systems based on similarity of phase space trajectory[J]. Expert Systems with Applications, 2015, 42 (5): 2353- 2360.
doi: 10.1016/j.eswa.2014.10.041 |
27 | KHELIF R, MALINOWSKI S, CHEBEL-MORELLO B, et al. RUL prediction based on a new similarity-instance based approach[C]//Proc. of the IEEE 23rd International Symposium on Industrial Electronics, 2014: 2463-2468. |
28 | WANG T Y, YU J B, SIEGEL D, et al. A similarity-based prognostics approach for remaining useful life estimation of engineered systems[C]//Proc. of the IEEE International Confe-rence on Prognostics and Health Management, 2008: 4-9. |
29 | EMMANUEL R. Investigating computational geometry for failure prognostics in presence of imprecise health indicator: results and comparisons on C-MAPSS datasets[C]//Proc. of the 2nd European Conference of the Prognostics and Health Management Society, 2014. |
30 | SEXENA A, KAI G, SIMO N, et al. Damage propagation modeling for aircraft engine run-to-failure simulation[C]//Proc. of the IEEE International Conference on Prognostics and Health Management, 2008. |
31 | HANZ R . Advanced control of turbofan engines[M]. Germany: Springer, 2012. |
[1] | Nuoxi ZHENG, Wu LI, Xiaoqiang ZHOU, Gang LIU. Projection decision method for consistency of multiple attribute similarity [J]. Systems Engineering and Electronics, 2022, 44(9): 2869-2877. |
[2] | Junzhou WANG, Huawei WANG, Zhaoguo HOU. Case analysis of civil aircraft structure maintenance over manual based on similarity system [J]. Systems Engineering and Electronics, 2022, 44(9): 2978-2985. |
[3] | Shouzhen ZENG, Yingjie HU. Group decision making method for distributed linguistic trust network based on highly incomplete information [J]. Systems Engineering and Electronics, 2022, 44(6): 1907-1919. |
[4] | Xudong SHI, Boyuan CHENG, Kun HUANG, Zhangang YANG. Risk assessment of aircraft IDG based on fuzzy TOPSIS-FMEA [J]. Systems Engineering and Electronics, 2022, 44(6): 2060-2064. |
[5] | Yingqi LU, Chengli FAN, Qiang FU, Xiaowen ZHU, Wei LI. Missile defense target threat assessment based on improved similarity measure and information entropy of IFRS [J]. Systems Engineering and Electronics, 2022, 44(4): 1230-1238. |
[6] | Shiyan SUN, Gang ZHANG, Weige LIANG, Bo SHE, Fuqing TIAN. Remaining useful life prediction method of rolling bearing based on time series data augmentation and BLSTM [J]. Systems Engineering and Electronics, 2022, 44(3): 1060-1068. |
[7] | Chong JIN, Juan SUN, Yongjia WANG, Pushen CAI, Xin RONG. Threat comprehensive assessment for air defense targets based on intuitionistic fuzzy TOPSIS and variable weight VIKOR [J]. Systems Engineering and Electronics, 2022, 44(1): 172-180. |
[8] | Yunxiang CHEN, Yi RAO, Zhongyi CAI, Zezhou WANG. Remaining useful lifetime prediction and economic reserve strategy of equipment components based on improved similarity [J]. Systems Engineering and Electronics, 2021, 43(9): 2688-2696. |
[9] | Tao SHU, Yichi ZHANG, Rixian DING. Life prediction of bearings in rotating machinery based on grey model and LSTM network [J]. Systems Engineering and Electronics, 2021, 43(8): 2355-2361. |
[10] | Zhaoli SONG, Xiang JIA, Bo GUO, Zhijun CHENG. Remaining useful life prediction of system based on Bayesian fusion and simulation [J]. Systems Engineering and Electronics, 2021, 43(6): 1706-1713. |
[11] | Li XIE, Xiangping YIN, Mingchi LIN, Shuyu ZI. Tiered pricing model of ship batch order under design changes [J]. Systems Engineering and Electronics, 2021, 43(3): 716-721. |
[12] | Yunke SUN, Zhigeng FANG, Ding CHEN. Multi-time threat assessment based on dynamic grey principal component analysis [J]. Systems Engineering and Electronics, 2021, 43(3): 740-746. |
[13] | Yufan JI, Lunwen WANG, Mengbo ZHANG. Similarity analysis of motion trajectory of communication transmitter [J]. Systems Engineering and Electronics, 2020, 42(9): 1920-1926. |
[14] | Xiaofang ZHONG, Hongjuan LAN, Wenqi JIANG. Consensus driven information fusion model of interval-valued intuitionistic fuzzy multi-criteria group decision making [J]. Systems Engineering and Electronics, 2020, 42(7): 1558-1566. |
[15] | Minggang YU, Ming HE, Dongge ZHANG, Lianxiang JIA. Scheme optimization for network information-centric system-of-systems based on multi-stage Bayesian Stackelberg game [J]. Systems Engineering and Electronics, 2020, 42(6): 1301-1309. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||