| 20 | 
																						 
											  邵凯, 朱苗苗, 王光宇.  基于生成对抗与卷积神经网络的调制识别方法[J]. 系统工程与电子技术, 2022, 44 (3): 1036- 1043. 
											 											 | 
										
																													
																						 | 
																						 
											   SHAO K ,  ZHU M M ,  WANG G Y .  Modulation recognition method based on generative adversarial network[J]. Systems Engineering and Electronics, 2022, 44 (3): 1036- 1043. 
											 											 | 
										
																													
																						| 21 | 
																						 
											 OORD A, LI Y, VINYALS O. Representation learning with contrastive predictive coding[EB/OJ]. [2021-10-10]. https://arxiv.org/abs/1807.03748.
											 											 | 
										
																													
																						| 22 | 
																						 
											 HE K M, FAN H Q, WU Y X, et al. Momentum contrast for unsupervised visual representation learning[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 9729-9738.
											 											 | 
										
																													
																						| 23 | 
																						 
											 CHEN X L, FAN H Q, GIRSHICK R, et al. Improved baselines with momentum contrastive learning[EB/OJ]. [2021-10-10]. https://arxiv.org/abs/2003.04297.
											 											 | 
										
																													
																						| 24 | 
																						 
											 CHEN X L, XIE S N, HE K. An empirical study of training self-supervised visual transformers[C]//Proc. of the IEEE/CVF Conference on Computer Vision, 2021: 9640-9649.
											 											 | 
										
																													
																						| 25 | 
																						 
											 CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]//Proc. of the 37th IEEE International Conference on Machine Learning, 2020: 1597-1607.
											 											 | 
										
																													
																						| 26 | 
																						 
											   CHEN T ,  KORNBLITH S ,  SWERSKY K , et al.  Big self-supervised models are strong semi-supervised learners[J]. Advances in neural information processing systems, 2020, 33, 22243- 22255.
											 											 | 
										
																													
																						| 27 | 
																						 
											 NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]//Proc. of the 27th IEEE International Conference on Machine Learning, 2010: 807-814.
											 											 | 
										
																													
																						| 28 | 
																						 
											 LIN M, CHEN Q, YAN S C. Network in network[C]//Proc. of the International Conference on Learning Representations, 2014.
											 											 | 
										
																													
																						| 29 | 
																						 
											 HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
											 											 | 
										
																													
																						| 30 | 
																						 
											 SZEGEDY C, WEI L, JIA Y, et al. Going deeper with convolutions[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
											 											 | 
										
																													
																						| 1 | 
																						 
											   NANDI A K ,  AZZOUZ E E .  Algorithms for automatic modulation recognition of communication signals[J]. IEEE Trans.on Communications, 1998, 46 (4): 431- 436. 
											 												 
																									doi: 10.1109/26.664294
																																			 											 | 
										
																													
																						| 2 | 
																						 
											   AZZOUZ E E ,  NANDI A K .  Automatic identification of digital modulation types[J]. Signal Processing, 1995, 47 (1): 55- 69. 
											 												 
																									doi: 10.1016/0165-1684(95)00099-2
																																			 											 | 
										
																													
																						| 3 | 
																						 
											   HO K C ,  PROKOPIW W ,  CHAN Y T .  Modulation identification of digital signals by the wavelet transform[J]. IEE Proceedings-Radar, Sonar and Navigation, 2002, 147 (4): 169- 176.
											 											 | 
										
																													
																						| 4 | 
																						 
											   SWAMI A ,  SADLER B M .  Hierarchical digital modulation classification using cumulants[J]. IEEE Trans.on Communications, 2000, 48 (3): 416- 429. 
											 												 
																									doi: 10.1109/26.837045
																																			 											 | 
										
																													
																						| 5 | 
																						 
											   SHERME A E .  A novel method for automatic modulation recognition[J]. Applied Soft Computing, 2012, 12 (1): 453- 461. 
											 												 
																									doi: 10.1016/j.asoc.2011.08.025
																																			 											 | 
										
																													
																						| 6 | 
																						 
											 GARDNER W A. Cyclostationarity in communications and signal processing[R]. Yountville CA: Statistical Signal Processing Inc, 1994.
											 											 | 
										
																													
																						| 7 | 
																						 
											 FEHSKE A, GAEDDERT J D, REED J H. A new approach to signal classification using spectral correlation and neural networks[C]//Proc. of the IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005: 144-150.
											 											 | 
										
																													
																						| 8 | 
																						 
											   BOUTTE D ,  SANTHANAM B .  A hybrid ICA-SVM approach to continuous phase modulation recognition[J]. IEEE Signal Processing Letters, 2009, 16 (5): 402- 405. 
											 												 
																									doi: 10.1109/LSP.2009.2016444
																																			 											 | 
										
																													
																						| 9 | 
																						 
											  王建新, 宋辉.  基于星座图的数字调制方式识别[J]. 通信学报, 2004, 25 (6): 166- 173. 
											 											 | 
										
																													
																						 | 
																						 
											   WANG J X ,  SONG H .  Digital modulation recognition based on constellation diagram[J]. Journal of Communications, 2004, 25 (6): 166- 173. 
											 											 | 
										
																													
																						| 10 | 
																						 
											   QUINLAN J R .  Induction of decision trees[J]. Machine Learning, 1986, 1 (1): 81- 106.
											 											 | 
										
																													
																						| 11 | 
																						 
											   CORTES C ,  VAPNIK V .  Support-vector networks[J]. Machine Learning, 1995, 20 (3): 273- 297.
											 											 | 
										
																													
																						| 12 | 
																						 
											   HEARST M A ,  DUMAIS S T ,  OSUNA E , et al.  Support vector machines[J]. IEEE Intelligent Systems and their applications, 1998, 13 (4): 18- 28. 
											 												 
																									doi: 10.1109/5254.708428
																																			 											 | 
										
																													
																						| 13 | 
																						 
											   LIPPMANN R .  An introduction to computing with neural nets[J]. IEEE ASSP Magazine, 1987, 4 (2): 4- 22. 
											 												 
																									doi: 10.1109/MASSP.1987.1165576
																																			 											 | 
										
																													
																						| 14 | 
																						 
											 O'SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]//Proc. of the International Conference on Engineering Applications of Neural Networks, 2016: 213-226.
											 											 | 
										
																													
																						| 15 | 
																						 
											 WEST N E, O'SHEA T. Deep architectures for modulation recognition[C]//Proc. of the IEEE International Symposium on Dynamic Spectrum Access Networks, 2017.
											 											 | 
										
																													
																						| 16 | 
																						 
											   O'SHEA T J ,  ROY T ,  CLANCY T C .  Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (1): 168- 179. 
											 												 
																									doi: 10.1109/JSTSP.2018.2797022
																																			 											 | 
										
																													
																						| 17 | 
																						 
											  查雄, 彭华, 秦鑫, 等.  基于多端卷积神经网络的调制识别方法[J]. 通信学报, 2019, 40 (11): 30- 37. 
											 											 | 
										
																													
																						 | 
																						 
											   ZHA X ,  PENG H ,  QIN X , et al.  Modulation recognition method based on multi-inputs convolution neural network[J]. Journal of Communications, 2019, 40 (11): 30- 37. 
											 											 | 
										
																													
																						| 18 | 
																						 
											  查雄, 彭华, 秦鑫, 等.  基于循环神经网络的卫星幅相信号调制识别与解调算法[J]. 电子学报, 2019, 47 (11): 2443- 2448. 
											 											 | 
										
																													
																						 | 
																						 
											   ZHA X ,  PENG H ,  QIN X , et al.  Satellite amplitude-phase signals modulation identification and demodulation algorithm based on the cyclic neural network[J]. Acta Electronica Sinica, 2019, 47 (11): 2443- 2448. 
											 											 | 
										
																													
																						| 19 | 
																						 
											  周鑫, 何晓新, 郑文昌.  基于图像深度学习的无线电信号识别[J]. 通信学报, 2019, 40 (7): 114- 125. 
											 											 | 
										
																													
																						 | 
																						 
											   ZHOU X ,  HE X X ,  ZHENG W C .  Radio signal recognition based on image deep learning[J]. Journal of Communications, 2019, 40 (7): 114- 125. 
											 											 |