| 1 | MOREIRA A ,  PRATS-IRAOLA P ,  YOUNIS M , et al.  A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1 (1): 6- 43. doi: 10.1109/MGRS.2013.2248301
 | 
																													
																						| 2 | ZHANG B C ,  HONG W ,  WU Y R .  Sparse microwave imaging: principles and applications[J]. SCIENCE CHINA Information Sciences, 2012, 55 (8): 1722- 1754. doi: 10.1007/s11432-012-4633-4
 | 
																													
																						| 3 | 吴一戎, 洪文, 张冰尘.  稀疏微波成像导论[M]. 北京: 科学出版社, 2018. | 
																													
																						|  | WU Y R ,  HONG W ,  ZHANG B C .  Introduction to sparse microwave imaging[M]. Beijing: Science Press, 2018. | 
																													
																						| 4 | XU G ,  ZHANG B J ,  YU H W , et al.  Sparse synthetic aperture radar imaging from compressed sensing and machine learning: theories, applications, and trends[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10 (4): 32- 69. doi: 10.1109/MGRS.2022.3218801
 | 
																													
																						| 5 | DONOHO D L .  Compressed sensing[J]. IEEE Trans.on Information Theory, 2006, 52 (4): 1289- 1306. doi: 10.1109/TIT.2006.871582
 | 
																													
																						| 6 | 沈笑云, 廖仙华, 孙卫天, 等.  可变先验贝叶斯学习稀疏SAR成像[J]. 系统工程与电子技术, 2021, 43 (7): 1781- 1790. doi: 10.12305/j.issn.1001-506X.2021.07.07
 | 
																													
																						|  | SHEN X Y ,  LIAO X H ,  SUN W T , et al.  Sparse SAR imaging based on varying prior Bayes learning[J]. Systems Engineering and Electronics, 2021, 43 (7): 1781- 1790. doi: 10.12305/j.issn.1001-506X.2021.07.07
 | 
																													
																						| 7 | SAMADI S ,  CETIN M ,  MASNADI-SHIRAZI M A .  Sparse representation-based synthetic aperture radar imaging[J]. IET Radar, Sonar & Navigation, 2011, 5 (2): 182- 193. | 
																													
																						| 8 | HU C Y ,  WANG L ,  ZHU D Y , et al.  Inverse synthetic aperture radar sparse imaging exploiting the group dictionary learning[J]. Remote Sensing, 2021, 13 (14): 2812. doi: 10.3390/rs13142812
 | 
																													
																						| 9 | NASH C, MENICK J, DIELEMAN S, et al. Generating images with sparse representations[EB/OL]. [2023-11-27]. https://arxiv.org/abs/2103.03841. | 
																													
																						| 10 | NANAVATI S P ,  PANIGRAHI P K .  Wavelet transform[J]. Resonance, 2004, 9 (3): 50- 64. doi: 10.1007/BF02834988
 | 
																													
																						| 11 | SAMADI S ,  CETIN M ,  MASNADI-SHIRAZI M A .  Multiple feature-enhanced SAR imaging using sparsity in combined dictionaries[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 10 (4): 821- 825. | 
																													
																						| 12 | SAMADI S, CETIN M, MASNADI-SHIRAZI M A. Multiple feature-enhanced synthetic aperture radar imaging[C]//Proc. of the Comference on Algorithms for Synthetic Aperture Radar Imagery XVI, 2009. | 
																													
																						| 13 | 熊世超, 倪嘉成, 张群, 等.  基于混合稀疏表示的二维压缩感知SAR成像[J]. 北京航空航天大学学报, 2022, 48 (11): 2314- 2324. | 
																													
																						|  | XIONG S C ,  NI J C ,  ZHANG Q , et al.  2-D compressed sensing SAR imaging based on mixed sparse representation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (11): 2314- 2324. | 
																													
																						| 14 | AKHAVAN S ,  BAGHESTANI F ,  KAZEMI P , et al.  Dictio-nary learning for sparse representation of signals with hidden Markov model dependency[J]. Digital Signal Processing, 2022, 123, 103420. doi: 10.1016/j.dsp.2022.103420
 | 
																													
																						| 15 | NG S M ,  YAZID H ,  MUSTAFA N .  Performance analysis on dictionary learning and sparse representation algorithms[J]. Multimedia Tools and Applications, 2022, 81 (12): 16455- 16476. doi: 10.1007/s11042-022-12375-4
 | 
																													
																						| 16 | ENGAN K, AASE S O, HUSOY J H. Method of optimal directions for frame design[C]//Proc. of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 1999: 2443-2446. | 
																													
																						| 17 | AHARON M ,  ELAD M ,  BRUCKSTEIN A .  K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Trans.on Signal Processing, 2006, 54 (11): 4311- 4322. doi: 10.1109/TSP.2006.881199
 | 
																													
																						| 18 | SOGANLUI A, CETIN M. Dictionary learning for sparsity-driven SAR image reconstruction[C]// Proc. of the IEEE International Conference on Image Processing, 2014. | 
																													
																						| 19 | 胡长雨, 汪玲, 朱栋强.  结合字典学习技术的ISAR稀疏成像方法[J]. 电子与信息学报, 2019, 41 (7): 1735- 1742. | 
																													
																						|  | HU C Y ,  WANG L ,  ZHU D Q .  Sparse ISAR imaging exploiting dictionary learning[J]. Journal of Electronics & Information Technology, 2019, 41 (7): 1735- 1742. | 
																													
																						| 20 | FARHANGKHAH N ,  SAMADI S ,  KHOSRAVI M R , et al.  Overcomplete pre-learned dictionary for incomplete data SAR imaging towards pervasive aerial and satellite vision[J]. Wireless Networks, 2024, 30 (5): 3989- 4001. doi: 10.1007/s11276-021-02821-w
 | 
																													
																						| 21 | LIU Q P ,  CHENG Y Q ,  CAO K C , et al.  Radar forward-looking imaging for complex targets based on sparse representation with dictionary learning[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4026605. | 
																													
																						| 22 | YANG M ,  ZHANG L ,  FENG X C , et al.  Sparse representation based fisher discrimination dictionary learning for image classification[J]. International Journal of Computer Vision, 2014, 109 (3): 209- 232. doi: 10.1007/s11263-014-0722-8
 | 
																													
																						| 23 | YÜCE G, ORTIZ-JIMÉNEZ G, BESBINAR B, et al. A structured dictionary perspective on implicit neural representations[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022. | 
																													
																						| 24 | DU H A ,  ZHANG Y G ,  MA L G , et al.  Structured discriminant analysis dictionary learning for pattern classification[J]. Knowledge-Based Systems, 2021, 216, 106794. doi: 10.1016/j.knosys.2021.106794
 | 
																													
																						| 25 | CANDES E J ,  ROMBERG J K ,  TAO T .  Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59 (8): 1207- 1223. doi: 10.1002/cpa.20124
 | 
																													
																						| 26 | BI H ,  BI G A ,  ZHANG B C , et al.  Complex-image-based sparse SAR imaging and its equivalence[J]. IEEE Trans.on Geoscience and Remote Sensing, 2018, 56 (9): 5006- 5014. doi: 10.1109/TGRS.2018.2803802
 | 
																													
																						| 27 | TIBSHIRANI R .  Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 1996, 58 (1): 267- 288. doi: 10.1111/j.2517-6161.1996.tb02080.x
 | 
																													
																						| 28 | DAUBECHIES I ,  DEFRISE M ,  DE-MOL C .  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications on Pure and Applied Mathematics, 2004, 57 (11): 1413- 1457. doi: 10.1002/cpa.20042
 | 
																													
																						| 29 | CUMMING I G ,  WONG F H .  Digital processing of synthetic aperture radar data[M]. Boston: Artech House, 2005. | 
																													
																						| 30 | WANG Z ,  BOVIK A C ,  SHEIKH H R , et al.  Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans.on Image Processing, 2004, 13 (4): 600- 612. doi: 10.1109/TIP.2003.819861
 |