

系统工程与电子技术 ›› 2026, Vol. 48 ›› Issue (1): 235-248.doi: 10.12305/j.issn.1001-506X.2026.01.21
收稿日期:2024-06-07
出版日期:2026-01-25
发布日期:2026-02-11
通讯作者:
贾红丽
E-mail:2932245889@qq.com
作者简介:崔志强(1995—),男,硕士研究生,主要研究方向为装备维修器材管理与保障
Zhiqiang CUI1,2(
), Hongli JIA1,*, Lili GAO1, Bing HAO1
Received:2024-06-07
Online:2026-01-25
Published:2026-02-11
Contact:
Hongli JIA
E-mail:2932245889@qq.com
摘要:
针对工厂代储器材保障模式特点和决策信息犹豫模糊特征,运用传统器材品种决策方法难以实现属性约简和规则提取,提出一种基于犹豫模糊粗糙集的器材品种决策方法。首先,从生产周期、关键性、存储要求、经济性、消耗性、通用性和保障装备现代化水平等方面对工厂代储器材品种决策影响因素进行分析。然后,提出基于决策习惯的不完备信息延拓方法。最后,构建基于相似度的模糊等价关系器材属性约简和规则提取模型,选取代储器材工厂作为案例,验证所提方法的有效性。所提方法较好地完成代储器材品种的选择。
中图分类号:
崔志强, 贾红丽, 高丽丽, 郝冰. 一种基于犹豫模糊粗糙集的工厂代储器材品种决策方法[J]. 系统工程与电子技术, 2026, 48(1): 235-248.
Zhiqiang CUI, Hongli JIA, Lili GAO, Bing HAO. Decision-making method based on hesitant fuzzy rough set for the variety of equipment stored on behalf of the factory[J]. Systems Engineering and Electronics, 2026, 48(1): 235-248.
表4
器材品种确定的不完备犹豫模糊决策表"
| 论域 | 生产周期 | 关键程度 | 存储要求 | 经济性 | 消耗量 | 通用性 | 使用程度 | 是否存储 |
| x1 | 0.9 | 0.85,0.9,0.95 | 0.5,0.5,0.6 | 0.95 | 0.85,0.9,0.9 | 0.85,0.9,0.95 | 0.7 | 1 |
| x2 | 0.9,*,0.95 | 0.85,*,0.95 | 0.5,0.5,0.6 | 0.95 | 0.85,0.9,0.9 | 0.85,*,0.95 | 0.9 | 1 |
| x3 | 0.75 | 0.85,0.9,0.95 | 0.5,0.6,0.65 | 0.9 | 0.8,0.85,* | 0.85,0.9,0.95 | 0.8 | 1 |
| x4 | 0.3 | 0.5,0.7,0.8 | *,0.85,0.9 | 0.9 | 0.6,0.7,0.7 | 0.6,0.7,0.7 | 0.7 | 1 |
| x5 | 0.3 | 0.4,0.5,0.7 | 0.1,0.15,0.2 | 0.8 | 0.8,0.8,0.9 | 0.1,0.2,0.2 | 0.6 | 0 |
| x6 | 0.35 | 0.4,0.6,0.7 | 0.3,0.4,0.45 | 0.75 | 0.7,*,0.8 | 0.6,0.6,0.7 | 0.6 | 1 |
| x7 | 0.3,0.3,0.4 | 0.45,0.5,0.7 | 0.8,*,0.9 | 0.7 | 0.6,0.7,0.7 | 0.6,0.7,0.7 | 0.9 | 1 |
| x8 | 0.05 | 0.2,0.3,0.35 | 0.2,0.3,0.35 | 0.7 | 0.25,0.3,0.3 | 0.4,0.5,0.5 | 0.7 | 0 |
| x9 | 0.2,0.2,0.3 | 0.6,0.7,0.75 | 0.5,0.55,0.7 | 0.5 | 0.5,0.5,0.6 | 0.2,0.3,0.3 | 0.9 | 1 |
| x10 | 0.1 | 0.2,*,0.3 | 0.2,0.3,0.35 | 0.1 | 0.2,0.2,0.3 | 0.1,0.1,0.2 | 0.1 | 0 |
| x11 | 0.05 | 0.1,0.2,0.3 | 0.05,0.1,0.15 | 0.05 | 0.15,0.2,0.2 | *,0.1,0.1 | 0.2 | 0 |
| x12 | 0.1 | 0.1,0.3,0.35 | 0.2,0.3,0.35 | 0.05 | 0.2,0.2,0.3 | 0.4,0.5,0.5 | 0.6 | 0 |
表5
器材品种确定的犹豫模糊决策表"
| 论域 | 生产周期 | 关键程度 | 存储要求 | 经济性 | 消耗量 | 通用性 | 使用程度 | 是否存储 |
| x1 | 0.9 | 0.85,0.9,0.95 | 0.5,0.5,0.6 | 0.95 | 0.85,0.9,0.9 | 0.85,0.9,0.95 | 0.7 | 1 |
| x2 | 0.9,0.9,0.95 | 0.85,0.9,0.95 | 0.5,0.5,0.6 | 0.95 | 0.85,0.9,0.9 | 0.85,0.92,0.95 | 0.9 | 1 |
| x3 | 0.75 | 0.85,0.9,0.95 | 0.5,0.6,0.65 | 0.9 | 0.8,0.85,0.9 | 0.85,0.9,0.95 | 0.8 | 1 |
| x4 | 0.3 | 0.5,0.7,0.8 | 0.8,0.85,0.9 | 0.9 | 0.6,0.7,0.7 | 0.6,0.7,0.7 | 0.7 | 1 |
| x5 | 0.3 | 0.4,0.5,0.7 | 0.1,0.15,0.2 | 0.8 | 0.8,0.8,0.9 | 0.1,0.2,0.2 | 0.6 | 0 |
| x6 | 0.35 | 0.4,0.6,0.7 | 0.3,0.4,0.45 | 0.75 | 0.7,0.75,0.8 | 0.6,0.6,0.7 | 0.6 | 1 |
| x7 | 0.3,0.3,0.4 | 0.45,0.5,0.7 | 0.8,0.85,0.9 | 0.7 | 0.6,0.7,0.7 | 0.6,0.7,0.7 | 0.9 | 1 |
| x8 | 0.05 | 0.2,0.3,0.35 | 0.2,0.3,0.35 | 0.7 | 0.25,0.3,0.3 | 0.4,0.5,0.5 | 0.7 | 0 |
| x9 | 0.2,0.2,0.3 | 0.6,0.7,0.75 | 0.5,0.55,0.7 | 0.5 | 0.5,0.5,0.6 | 0.2,0.3,0.3 | 0.9 | 1 |
| x10 | 0.1 | 0.2,0.25,0.3 | 0.2,0.3,0.35 | 0.1 | 0.2,0.2,0.3 | 0.1,0.1,0.2 | 0.1 | 0 |
| x11 | 0.05 | 0.1,0.2,0.3 | 0.05,0.1,0.15 | 0.05 | 0.15,0.2,0.2 | 0.1,0.1,0.1 | 0.2 | 0 |
| x12 | 0.1 | 0.1,0.3,0.35 | 0.2,0.3,0.35 | 0.05 | 0.2,0.2,0.3 | 0.4,0.5,0.5 | 0.6 | 0 |
表6
约简后的决策系统1"
| 论域 | 生产周期 | 关键程度 | 存储要求 | 是否存储 |
| x1 | 0.9 | 0.85,0.9,0.95 | 0.5,0.5,0.6 | 1 |
| x2 | 0.9,0.9,0.95 | 0.85,0.9,0.95 | 0.5,0.5,0.6 | 1 |
| x3 | 0.75 | 0.85,0.9,0.95 | 0.5,0.6,0.65 | 1 |
| x4 | 0.3 | 0.5,0.7,0.8 | 0.8,0.85,0.9 | 1 |
| x5 | 0.3 | 0.4,0.5,0.7 | 0.1,0.15,0.2 | 0 |
| x6 | 0.35 | 0.4,0.6,0.7 | 0.3,0.4,0.45 | 1 |
| x7 | 0.3,0.3,0.4 | 0.45,0.5,0.7 | 0.8,0.85,0.9 | 1 |
| x8 | 0.05 | 0.2,0.3,0.35 | 0.2,0.3,0.35 | 0 |
| x9 | 0.2,0.2,0.3 | 0.6,0.7,0.75 | 0.5,0.55,0.7 | 1 |
| x10 | 0.1 | 0.2,0.25,0.3 | 0.2,0.3,0.35 | 0 |
| x11 | 0.05 | 0.1,0.2,0.3 | 0.1,0.15,0.5 | 0 |
| x12 | 0.1 | 0.1,0.3,0.35 | 0.2,0.3,0.35 | 0 |
表7
约简后的决策系统2"
| 论域 | 生产周期 | 存储要求 | 消耗量 | 是否存储 |
| x1 | 0.9 | 0.5,0.5,0.6 | 0.85,0.9,0.9 | 1 |
| x2 | 0.9,0.9,0.95 | 0.5,0.5,0.6 | 0.85,0.9,0.9 | 1 |
| x3 | 0.75 | 0.5,0.6,0.65 | 0.8,0.85,0.9 | 1 |
| x4 | 0.3 | 0.8,0.85,0.9 | 0.6,0.7,0.7 | 1 |
| x5 | 0.3 | 0.1,0.15,0.2 | 0.8,0.8,0.9 | 0 |
| x6 | 0.35 | 0.3,0.4,0.45 | 0.7,0.75,0.8 | 1 |
| x7 | 0.3,0.3,0.4 | 0.8,0.85,0.9 | 0.6,0.7,0.7 | 1 |
| x8 | 0.05 | 0.2,0.3,0.35 | 0.25,0.3,0.3 | 0 |
| x9 | 0.2,0.2,0.3 | 0.5,0.55,0.7 | 0.5,0.5,0.6 | 1 |
| x10 | 0.1 | 0.2,0.3,0.35 | 0.2,0.2,0.3 | 0 |
| x11 | 0.05 | 0.1,0.15,0.5 | 0.15,0.2,0.2 | 0 |
| x12 | 0.1 | 0.2,0.3,0.35 | 0.2,0.2,0.3 | 0 |
表8
约简后的决策系统3"
| 论域 | 关键程度 | 存储要求 | 消耗量 | 是否存储 |
| x1 | 0.85,0.9,0.95 | 0.5,0.5,0.6 | 0.85,0.9,0.9 | 1 |
| x2 | 0.85,0.9,0.95 | 0.5,0.5,0.6 | 0.85,0.9,0.9 | 1 |
| x3 | 0.85,0.9,0.95 | 0.5,0.6,0.65 | 0.8,0.85,0.9 | 1 |
| x4 | 0.5,0.7,0.8 | 0.8,0.85,0.9 | 0.6,0.7,0.7 | 1 |
| x5 | 0.4,0.5,0.7 | 0.1,0.15,0.2 | 0.8,0.8,0.9 | 0 |
| x6 | 0.4,0.6,0.7 | 0.3,0.4,0.45 | 0.7,0.75,0.8 | 1 |
| x7 | 0.45,0.5,0.7 | 0.8,0.85,0.9 | 0.6,0.7,0.7 | 1 |
| x8 | 0.2,0.3,0.35 | 0.2,0.3,0.35 | 0.25,0.3,0.3 | 0 |
| x9 | 0.6,0.7,0.75 | 0.5,0.55,0.7 | 0.5,0.5,0.6 | 1 |
| x10 | 0.2,0.25,0.3 | 0.2,0.3,0.35 | 0.2,0.2,0.3 | 0 |
| x11 | 0.1,0.2,0.3 | 0.1,0.15,0.5 | 0.15,0.2,0.2 | 0 |
| x12 | 0.1,0.3,0.35 | 0.2,0.3,0.35 | 0.2,0.2,0.3 | 0 |
表9
约简后的决策系统4"
| 论域(U) | 关键程度 | 存储要求 | 通用性 | 是否存储 |
| x1 | 0.85,0.9,0.95 | 0.5,0.5,0.6 | 0.85,0.9,0.95 | 1 |
| x2 | 0.85,0.9,0.95 | 0.5,0.5,0.6 | 0.85,0.9,0.95 | 1 |
| x3 | 0.85,0.9,0.95 | 0.5,0.6,0.65 | 0.85,0.9,0.95 | 1 |
| x4 | 0.5,0.7,0.8 | 0.8,0.85,0.9 | 0.6,0.7,0.7 | 1 |
| x5 | 0.4,0.5,0.7 | 0.1,0.15,0.2 | 0.1,0.2,0.2 | 0 |
| x6 | 0.4,0.6,0.7 | 0.3,0.4,0.45 | 0.6,0.6,0.7 | 1 |
| x7 | 0.45,0.5,0.7 | 0.8,0.85,0.9 | 0.6,0.7,0.7 | 1 |
| x8 | 0.2,0.3,0.35 | 0.2,0.3,0.35 | 0.4,0.5,0.5 | 0 |
| x9 | 0.6,0.7,0.75 | 0.5,0.55,0.7 | 0.2,0.3,0.3 | 1 |
| x10 | 0.2,0.25,0.3 | 0.2,0.3,0.35 | 0.1,0.1,0.2 | 0 |
| x11 | 0.1,0.2,0.3 | 0.1,0.15,0.5 | 0.1,0.1,0.1 | 0 |
| x12 | 0.1,0.3,0.35 | 0.2,0.3,0.35 | 0.4,0.5,0.5 | 0 |
表10
工厂代储器材决策规则"
| 条件 | 决策 | 说明 |
| 配置 | ||
| 配置 | ||
| 配置 | ||
| 配置 | ||
| 配置 | ||
| 不配置 | ||
| 不配置 | ||
| 不配置 | ||
| 不配置 |
| 1 | 王亚彬. 陆军装备维修器材管理[M]. 北京: 兵器工业出 版社, 2020. |
| WANG Y B. Army equipment maintenance and equipment management[M]. Beijing: Arms Industry Publishing House, 2020. | |
| 2 |
BURMEISTER N, FREDERIKSEN R D, HØG E, et al. Exploration of production data for predictive maintenance of industrial equipment: a case study[J]. IEEE Access, 2023, 11, 102025- 102037.
doi: 10.1109/ACCESS.2023.3315842 |
| 3 |
CARDEAL G, LEITE M, RIBEIRO I. Decision-support model to select spare parts suitable for additive manufacturing[J]. Computers in Industry, 2023, 144, 103798.
doi: 10.1016/j.compind.2022.103798 |
| 4 |
MUNIZ L R, CONCEICAO S V, RODRIGUES L F, et al. Spare parts inventory management: a new hybrid approach[J]. International Journal of Logistics Management, 2021, 32 (1): 40- 67.
doi: 10.1108/IJLM-12-2019-0361 |
| 5 | LI G X, KOU G, PENG Y. A group decision making model for integrating heterogeneous information[J]. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2016, 48 (6): 982- 992. |
| 6 |
LEE C Y, DONG Z H. Hierarchical equipment health index framework[J]. IEEE Trans. on Semiconductor Manufacturing, 2019, 32 (3): 267- 276.
doi: 10.1109/TSM.2019.2925362 |
| 7 |
FRANDSEN C S, NIELSEN M M, CHAUDHURI A, et al. In search for classification and selection of spare parts suitable for additive manufacturing: a literature review[J]. International Journal of Production Research, 2020, 58 (4): 970- 996.
doi: 10.1080/00207543.2019.1605226 |
| 8 | 黄建新, 杨建军, 张志峰. 基于不完备信息的粗糙集确定备件品种[J]. 装备指挥技术学院学报, 2005, (3): 44- 46. |
| HUANG J X, YANG J J, ZHANG Z F. Rough set determination of spare parts varieties based on incomplete information[J]. Journal of Equipment Command Technology College, 2005, (3): 44- 46. | |
| 9 |
董骁雄, 陈云翔, 蔡忠义, 等. 基于不完备信息的粗糙集初始备件品种确定方法[J]. 系统工程与电子技术, 2018, 40 (3): 590- 594.
doi: 10.3969/j.issn.1001-506X.2018.03.16 |
|
DONG X X, CHEN Y X, CAI Z Y, et al. A rough set initial spare parts variety determination method based on incomplete information[J]. Systems Engineering and Electronics, 2018, 40 (3): 590- 594.
doi: 10.3969/j.issn.1001-506X.2018.03.16 |
|
| 10 |
CANTINI A, PERON M, CARLO F D, et al. A decision support system for configuring spare parts supply chains considering different manufacturing technologies[J]. International Journal of Production Research, 2024, 62 (8): 3023- 3043.
doi: 10.1080/00207543.2022.2041757 |
| 11 |
王双川, 贾希胜, 李锋, 等. 基于仿真的合成部队装备维修保障资源需求确定和效能评估[J]. 兵工学报, 2020, 41 (8): 1646- 1657.
doi: 10.3969/j.issn.1000-1093.2020.08.019 |
|
WANG S C, JIA X S, LI F, et al. Simulation-based resource requirement determination and effectiveness assessment for equipment maintenance and security of synthetic forces[J]. Acta Armamentarii, 2020, 41 (8): 1646- 1657.
doi: 10.3969/j.issn.1000-1093.2020.08.019 |
|
| 12 |
CUI Z Q, JIA H L, GAO Q, et al. Maintenance spare parts prediction based on multilevel migration learning CNN-ISE-Attention-BiLSTM[J]. IEEE Access, 2024, 12, 15208- 15221.
doi: 10.1109/ACCESS.2024.3357994 |
| 13 | BARBOSA W S, WANDERLEY R F, GIOIA M M, et al. Additive or subtractive manufacturing: analysis and comparison of automotive spare-parts[J]. Journal of Remanufacturing, 2022, 12(2): 153−166. |
| 14 |
HU Q W, CHAKHAR S, SIRAJ S, et al. Spare parts classification in industrial manufacturing using the dominance-based rough set approach[J]. European Journal of Operational Research, 2017, 262 (3): 1136- 1163.
doi: 10.1016/j.ejor.2017.04.040 |
| 15 |
ANTOSZ K, RATNAYAKE R M C. Classification of spare parts as the element of a proper realization of the machine maintenance process and logistics-case study[J]. IFAC-PapersOnLine, 2016, 49 (12): 1389- 1393.
doi: 10.1016/j.ifacol.2016.07.760 |
| 16 |
BAYKASOGLU A, SUBULAN K, KARASLAN F S. A new fuzzy linear assignment method for multi-attribute decision making with an application to spare parts inventory classification[J]. Applied soft computing, 2016, 42, 1- 17.
doi: 10.1016/j.asoc.2016.01.031 |
| 17 |
BRAGLIA M, GRASSI A, MONTANARI R. Multi-attribute classification method for spare parts inventory management[J]. Journal of Quality in Maintenance Engineering, 2004, 10 (1): 55- 65.
doi: 10.1108/13552510410526875 |
| 18 |
ZHANG M, WEI K K, HE S G, et al. Performance-based maintenance contract for mission-critical equipment considering spare parts inventory cost-sharing and suppliers’ risk attitudes[J]. International Journal of Production Research, 2023, 61 (21): 7524- 7539.
doi: 10.1080/00207543.2022.2151661 |
| 19 |
CANTINI A, PERON M, CARLO F D, et al. A data-driven methodology for the periodic review of spare parts supply chain configurations[J]. International Journal of Production Research, 2024, 62 (5): 1818- 1845.
doi: 10.1080/00207543.2023.2201939 |
| 20 | CHAUDHURI A, GERLICH H A, JAYARAM J, et al. Selecting spare parts suitable for additive manufacturing: a design science approach[J]. Production Planning & Control, 2021, 32 (8): 670- 687. |
| 21 | KACPRZYK J, LINGUISTIC V F C. Granular, Fuzzy, and Soft Computing[M]. New York: Springer, 2023. |
| 22 |
ALAVI S M, KHAZRAVI N. Evaluation and ranking of fuzzy sets under equivalence fuzzy relations as α−certainty and β−possibility[J]. Expert Systems with Applications, 2024, 248, 123175.
doi: 10.1016/j.eswa.2024.123175 |
| 23 | ALCANTUD J C R, FENG F, DIAZ-VAZQUEZ S, et al. Novel rough set models based on hesitant fuzzy information[J]. Soft Computing, 2023. DOI:https://doi.org/10.1007/s00500-023-09066-z. |
| 24 | SINDHU M S, AHSAN M, AHMAD K, et al. Modeling of decision-making based on hesitant fuzzy sets[J]. Bulletin of Business and Economics, 2024, 13(1). DOI: https://doi.org/10.61506/. |
| 25 | XU Z S, XIA M M. Distance and similarity measures for hesitant fuzzy sets[J]. Information Sciences, 2011, 181 (11): 2128−2138. |
| 26 |
BANERJEE M, CHAKRABORTY M K, SZALAS A. Logics from rough sets[J]. Journal of Applied Non-Classical Logics, 2024, 34 (2/3): 171- 173.
doi: 10.1080/11663081.2024.2336616 |
| 27 |
AL-SHAMI T M, MHEMDI A. Generalized frame for orthopair fuzzy sets: (m, n)-fuzzy sets and their applications to multi-criteria decision-making methods[J]. Information, 2023, 14 (1): 56.
doi: 10.3390/info14010056 |
| 28 | LEE R G, ZHU P, ZHU Y M, et al. Research on classification of logistics equipment based on rough set[C]//Proc. of the IEEE International Conference on Industrial Engineering and Engineering Management, 2019: 1427−1430. |
| 29 |
杨超, 侯兴明, 陈小卫, 等. 新型小规模装备备件品种确定的犹豫模糊粗糙集决策方法[J]. 国防科技大学学报, 2022, 44 (3): 201- 210.
doi: 10.11887/j.cn.202203024 |
|
YANG C, HOU X M, CHEN X W, et al. Hesitant fuzzy rough set decision-making method for determining spare parts varieties of new small-scale equipment[J]. Journal of National University of Defence Technology, 2022, 44 (3): 201- 210.
doi: 10.11887/j.cn.202203024 |
|
| 30 | 齐爽. 犹豫模糊粗糙集模型推广及其应用[D]. 盘锦: 辽宁工业大学, 2019: 9−40. |
| QI S. Hesitation fuzzy rough set model promotion and its application [D]. Panjin: Liaoning University of Technology, 2019: 9−40. | |
| 31 | 郭庆. 基于粗糙集理论的不确定信息系统及其决策研究[D]. 合肥: 合肥工业大学, 2018: 17−28. |
| GUO Q. Research on uncertainty information system and its decision making based on rough set theory[D]. Hefei: Hefei University of Technology, 2018: 17−28. |
| [1] | 关欣, 刘赢. 毕达哥拉斯犹豫模糊集多属性决策研究[J]. 系统工程与电子技术, 2024, 46(3): 982-991. |
| [2] | 卢盈齐, 范成礼, 付强, 朱晓雯, 李威. 基于改进IFRS相似度和信息熵的反导作战目标威胁评估[J]. 系统工程与电子技术, 2022, 44(4): 1230-1238. |
| [3] | 任耀军, 袁修久, 黄林. q阶三角犹豫模糊BM算子及其多属性决策应用[J]. 系统工程与电子技术, 2022, 44(1): 181-191. |
| [4] | 吕跃, 杨爱武, 李战武, 奚之飞. 空战决策知识构建方法研究[J]. 系统工程与电子技术, 2021, 43(7): 1866-1874. |
| [5] | 江文奇, 降晓璐. 面向属性关联的区间犹豫模糊型PROMETHEE决策方法[J]. 系统工程与电子技术, 2021, 43(11): 3250-3258. |
| [6] | 杨诚修, 王谦喆, 李淑婧, 裴少婷. 突防场景下基于NWHFS的集群射频隐身性能评估[J]. 系统工程与电子技术, 2020, 42(5): 1109-1115. |
| [7] | 杨诚修, 王谦喆, 祝捷, 李昂. 空战模式下航空集群射频隐身性能评估方法[J]. 系统工程与电子技术, 2020, 42(12): 2811-2818. |
| [8] | 王亮, 卢湛夷, 李卓禹. 基于粗糙集和证据理论的设备状态评估方法[J]. 系统工程与电子技术, 2020, 42(1): 141-147. |
| [9] | 李贺, 江登英. 基于改进符号距离的犹豫模糊前景理论决策方法[J]. 系统工程与电子技术, 2019, 41(12): 2820-2826. |
| [10] | 关欣, 刘海桥, 衣晓, 赵静. 基于反馈证据冲突度的概率转换[J]. 系统工程与电子技术, 2018, 40(7): 1436-1442. |
| [11] | 孙贵东, 关欣, 衣晓, 赵静. 基于Normative算子的HFS数值延拓方法及多属性决策应用[J]. 系统工程与电子技术, 2018, 40(7): 1530-1538. |
| [12] | 董骁雄, 陈云翔, 蔡忠义, 张玮玉. 基于粗糙集理论修正的后续备件指数平滑预测方法[J]. 系统工程与电子技术, 2018, 40(4): 833-838. |
| [13] | 关欣, 孙贵东, 衣晓, 赵静. 基于犹豫模糊集统计相关系数的多源异类数据融合识别[J]. 系统工程与电子技术, 2018, 40(3): 509-517. |
| [14] | 董骁雄, 陈云翔, 蔡忠义, 孟祥飞. 基于不完备信息的粗糙集初始备件品种确定方法[J]. 系统工程与电子技术, 2018, 40(3): 590-594. |
| [15] | 徐怡, 程燕. 基于属性值变化的动态覆盖系统中近似集增量算法[J]. 系统工程与电子技术, 2017, 39(7): 1660-1668. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||