系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (9): 3086-3092.doi: 10.12305/j.issn.1001-506X.2025.09.30

• 通信与网络 • 上一篇    

基于信号递归图和卷积宽度学习的小样本辐射源个体识别方法

陈宇鹏(), 黄科举, 刘辉, 邝龙坤, 杨俊安   

  1. 国防科技大学电子对抗学院,安徽 合肥 230000
  • 收稿日期:2024-07-26 出版日期:2025-09-25 发布日期:2025-09-16
  • 通讯作者: 杨俊安 E-mail:1090145783@qq.com
  • 作者简介:陈宇鹏(1997—),男,硕士研究生,主要研究方向为通信对抗、深度学习
    黄科举(1994—),男,讲师,博士,主要研究方向为通信对抗、深度学习
    刘 辉(1983—),男,副教授,博士,主要研究方向为通信对抗、智能信息处理
    邝龙坤(2002—),男,硕士研究生,主要研究方向为通信对抗

Few-shot specific emitter identification method based on signal recurrence plot and convolutional broad learning

Yupeng CHEN(), Keju HUANG, Hui LIU, Longkun KUANG, Junan YANG   

  1. College of Electronic Countermeasures,National University of Defense Technology,Hefei 230000,China
  • Received:2024-07-26 Online:2025-09-25 Published:2025-09-16
  • Contact: Junan YANG E-mail:1090145783@qq.com

摘要:

针对当前辐射源个体识别方法在小样本条件下容易过学习、识别准确率低的问题,提出一种基于信号递归图和卷积宽度学习的小样本辐射源个体识别方法。该方法将辐射源信号转换为递归图作为宽度学习网络的输入,将辐射源数据时序特征转化为图像空间特征;此外,提出一种卷积宽度学习网络,将宽度学习中特征节点的计算方式由矩阵乘法替换为卷积运算,通过稀疏连接和权值共享减少模型参数数量,从而减轻模型过拟合风险。通过对公开数据集实验,验证了所提算法在少量训练样本数量条件下相较于其他算法有更好的识别性能。

关键词: 递归图, 卷积宽度学习, 小样本, 辐射源个体识别

Abstract:

In order to solve the problem that the current specific emitter identification methods are easy to overfit and have low recognition accuracy under the condition of small samples, a few-shot specific emitter identification method based on signal recurrence plot and convolutional broad learning is proposed. In this method, the emitter signal is converted into a recurrence plot as the input of the broad learning network, and the time series features of the emitter data are transformed into image spatial features. In addition, a convolutional broad learning network is proposed, which replaces the computation method of feature nodes in broad learning from matrix multiplication to convolution operation, and reduces the number of model parameters through sparse joining and weight sharing, thereby reducing the risk of model overfitting. Through experiments on public datasets, it is verified that the proposed algorithm has better recognition performance than other algorithms under the condition of a small number of training samples.

Key words: recurrence plot, convolutional broad learning, few-shot, specific emitter identification

中图分类号: