系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (8): 2549-2557.doi: 10.12305/j.issn.1001-506X.2025.08.13

• 传感器与信号处理 • 上一篇    

基于单站无源运动定位的多目标跟踪方法

马晓萌1,2(), 邓东明2,*(), 沈永健2(), 丁金闪1(), 郝国卿2()   

  1. 1. 西安电子科技大学电子工程学院,陕西 西安 710071
    2. 北京遥测技术研究所,北京 100094
  • 收稿日期:2024-05-06 出版日期:2025-08-25 发布日期:2025-09-04
  • 通讯作者: 邓东明 E-mail:mxm_201359@163.com;dengdongming19@163.com;shenyongshen@163.com;ding@xidian.edu.cn;13994552790@163.com
  • 作者简介:马晓萌(1989—),女,高级工程师,博士研究生,主要研究方向为雷达信号处理、阵列信号处理
    沈永健(1985—),男,研究员,博士,主要研究方向为电子侦察与对抗系统设计
    丁金闪(1980—),男,教授,博士,主要研究方向为新体制雷达系统设计、信号处理
    郝国卿(1998—),男,工程师,硕士,主要研究方向为阵列信号处理、雷达信号处理
  • 基金资助:
    国家自然科学基金(62171358)资助课题

Multi-target tracking method based on single observer passive motion location

Xiaomeng MA1,2(), Dongming DENG2,*(), Yongjian SHEN2(), Jinshan DING1(), Guoqing HAO2()   

  1. 1. School of Electronic Engineering,Xidian University,Xi’an 710071,China
    2. Beijing Research Institute of Telemetry,Beijing 100094,China
  • Received:2024-05-06 Online:2025-08-25 Published:2025-09-04
  • Contact: Dongming DENG E-mail:mxm_201359@163.com;dengdongming19@163.com;shenyongshen@163.com;ding@xidian.edu.cn;13994552790@163.com

摘要:

针对单站无源运动定位中的多目标定位问题,基于随机有限集(random finite set,RFS)的高斯混合多目标滤波器(Gaussian mixture multi-target filter,GM-MTF)提出一种多目标单站无源运动定位方法。首先,基于单站无源运动定位方法,将定位问题等效为目标跟踪问题,同时构建无源定位体系下的多目标跟踪非线性量测模型。其次,基于GM-MTF,给出融合容积卡尔曼滤波器的高斯混合实现过程以适应量测非线性模型,并给出完整的实现过程。在此基础上,联合相位差变化率定位法提出一种二次滤波的单站无源多目标定位方法。所提方法通过将单站无源运动定位和RFS多目标滤波器进行融合,将单目标定位场景进一步拓展到复杂的多目标场景。同时,通过仿真结果表明,对比传统的相位差变化率定位法,所提方法不仅定位精度优势明显,而且在复杂的杂波环境下具备一定的抗干扰能力和鲁棒性。

关键词: 单站无源运动定位, 多目标跟踪, 高斯混合, 有限集统计, 容积卡尔曼滤波

Abstract:

To address the multi-target localization problem in single observer passive motion localization, a multi-target single observer passive motion localization method is proposed based on the Gaussian mixture multi-target filter (GM-MTF) of the random finite set (RFS). Firstly, based on the single observer passive motion location method, the localization problem is equivalent to a target tracking problem, and the nonlinear measurement model of multi-target tracking in the passive location system is constructed. Then, based on the GM-MTF, a Gaussian mixture implementation process fused with the cubature Kalman filter is provided to adapt to the measurement nonlinearity model, and the complete implementation process is given. On this basis, combined with the phase difference change rate positioning method, a single observer passive multi-target positioning method with secondary filtering is proposed. The proposed method integrates single observer passive motion localization and RFS multi-target filters, thereby further expanding the single target localization scene to complex multi-target scenes. Meanwhile, simulation results show that compared with traditional phase difference rate of change positioning methods, the proposed method not only has significant advantages in positioning accuracy, but also has certain anti-interference ability and robustness in complex clutter environments.

Key words: single observer passive motion location, multi-target tracking, Gaussian mixture, finite set statistics, cubature Kalman filtering (CKF)

中图分类号: