系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (6): 1930-1940.doi: 10.12305/j.issn.1001-506X.2025.06.21
李特, 郭强, 战鹏
收稿日期:
2024-05-21
出版日期:
2025-06-25
发布日期:
2025-07-09
通讯作者:
郭强
作者简介:
李特(1987—), 男, 工程师, 硕士, 主要研究方向为深空探测工程基金资助:
Te LI, Qiang GUO, Peng ZHAN
Received:
2024-05-21
Online:
2025-06-25
Published:
2025-07-09
Contact:
Qiang GUO
摘要:
针对未来月球探测任务中探测器系统使用需求和综合设计难点, 为有效解决各型探测器使用兼容、网络通联、维护保障等问题, 以基于模型的系统工程(model-based systems engineering, MBSE)正向设计为指导, 结合互操作性设计思想, 提出基于“场景分析-需求分析-功能与架构分析-架构设计”的系统架构开发流程。以典型任务场景下探测器系统互操作能力需求为输入, 构建关键功能约束下的系统用例、活动、时序、状态等视图模型, 通过权衡分析, 形成探测器最小单元物理架构, 为多种构型探测器架构和功能配置设计提供可行性方法, 提升系统开发和验证效率。
中图分类号:
李特, 郭强, 战鹏. 基于MBSE的异构探测器系统架构设计方法[J]. 系统工程与电子技术, 2025, 47(6): 1930-1940.
Te LI, Qiang GUO, Peng ZHAN. Architecture design method of heterogeneous probe systems based on MBSE[J]. Systems Engineering and Electronics, 2025, 47(6): 1930-1940.
表1
月面探测器系统内外部交互关系表"
系统层级 | 交互对象 | 互操作内容 | 互操作能力需求 |
体系支持层 | 探测器系统与测控系统、地面应用系统 | 遥测信息, 遥控指令, 下行数传 | 1.探测器系统与地面站建立通信; 2.探测器系统通过中继通信卫星与地面站建立通信; 3.月面通信基站为探测器系统提供多模通信支持; 4.月面保障系统支持能源供给, 支持维护和检测; 5.月面保障系统支持任务载荷换装; 6.航天维护人员支持对特殊故障进行检查。 |
探测器系统与中继通信卫星 | 中继通信 | ||
探测器系统与月面通信基站 | 月面组网互联 | ||
探测器系统与月面保障系统、航天维护人员 | 能源供给, 维护和检测, 人工检查 | ||
异构系统层 | 着陆器指控中枢与各型探测器 | 异构系统指控交互(指控命令、任务分配信息、指控权限交接) | 1.依据测控系统上行遥控指令, 着陆器指控中枢结合环境信息, 生成行动方案, 并对各型探测器进行任务分配; 2.与指定探测器完成指控权限交接; 3.着陆器指控中枢向各探测器发送环境信息、任务目标信息; 4.各探测器向着陆器指控中枢回传科学探测信息、工程作业信息、任务载荷状态信息。 |
着陆器指控中枢与各型探测器 | 异构系统信息交互(环境信息、任务目标信息、科学探测信息、工程作业信息、任务载荷状态信息) | ||
同型系统层 | 同型探测器之间 | 同型系统指控交互(指控命令) | 1.指定探测器完成编队内其他探测器指控; 2.同型探测器之间发送协同任务信息; 3.同型探测器之间发送接替任务信息。 |
同型探测器之间 | 协同任务信息交互(协同任务信息) | ||
同型探测器之间 | 接替任务信息交互(接替任务信息) |
1 | 关锋,葛平,周国栋,等.MBSE发展趋势与中国探月工程并行协同论证[J].空间科学学报,2022,42(2):183-190. |
GUANF,GEP,ZHOUG D,et al.Development trend of MBSE and investigation of concurrent collaborative demonstration for Chinese Lunar Exploration program[J].Chinese Journal of Space Science,2022,42(2):183-190. | |
2 | 裴照宇,刘继忠,王倩,等.月球探测进展与国际月球科研站[J].科学通报,2020,65(24):2577-2586. |
PEIZ Y,LIUJ Z,WANGQ,et al.Overview of lunar exploration and International Lunar Research Station[J].Chinese Science Bulletin,2020,65(24):2577-2586. | |
3 | 裴照宇,康炎,马继楠,等.基于模型的国际月球科研站协同论证方法[J].航空学报,2022,43(12):319-333. |
PEIZ Y,KANGY,MAJ N,et al.Model-based collaborative demonstration method for International Lunar Research Station[J].Acta Aeronautica et Astronautica Sinica,2022,43(12):319-333. | |
4 | 关锋,葛平,邵艳利,等.基于MBSE的月球科研站任务分析[J].航空工程进展,2023,14(3):84-99. |
GUANF,GEP,SHAOY L,et al.Mission analysis of lunar scientific research station based on MBSE[J].Advances in Aeronautical Science and Engineering,2023,14(3):84-99. | |
5 |
彭祺擘,张海联.基于模型的载人航天工程需求分析方法[J].系统工程与电子技术,2023,45(11):3532-3543.
doi: 10.12305/j.issn.1001-506X.2023.11.20 |
PENGQ B,ZHANGH L.Model-based requirements analysis method for manned space engineering[J].Systems Engineering and Electronics,2023,45(11):3532-3543.
doi: 10.12305/j.issn.1001-506X.2023.11.20 |
|
6 | 张柏楠,戚发轫,邢涛,等.基于模型的载人航天器研制方法研究与实践[J].航空学报,2020,41(7):72-80. |
ZHANGB N,QIF R,XINGT,et al.Model-based development method of manned spacecraft: research and practice[J].Acta Aeronautica et Astronautica Sinica,2020,41(7):72-80. | |
7 | 于国斌.深空探测任务协同的系统工程方法应用及趋势[J].深空探测学报,2021,8(4):407-413. |
YUG B.Application and trend of model-based systems engineering methods for deep space exploration mission[J].Journal of Deep Space Exploration,2021,8(4):407-413. | |
8 | 焦洪臣,雷勇,张宏宇,等.基于MBSE的航天器系统建模分析与设计研制方法探索[J].系统工程与电子技术,2021,43(9):2515-2525. |
JIAOH C,LEIY,ZHANGH Y,et al.Research on modeling and design method of spacecraft system based on MBSE[J].Systems Engineering and Electronics,2021,43(9):2515-2525. | |
9 | 彭坤,袁文强,黄震,等.基于模型的载人登月飞船系统设计应用探讨[J].载人航天,2022,28(1):1-9. |
PENYK,YUANW Q,HUANGZ,et al.Discussion on model based design and application of manned lunar spacecraft system[J].Manned Spaceflight,2022,28(1):1-9. | |
10 | 刘继忠,裴照宇,于国斌.航天工程多态全息模型及应用[J].宇航学报,2019,40(5):535-542. |
LIUJ Z,PEIZ Y,YUG B.Space engineering multi-state holo-graphic model and its applications[J].Journal of Astronautics,2019,40(5):535-542. | |
11 | 梅芊,黄丹,卢艺.基于MBSE的民用飞机功能架构设计方法[J].北京航空航天大学学报,2019,45(5):1042-1051. |
MEIQ,HUANGD,LUY.Design method of civil aircraft functional architecture based on MBSE[J].Journal of Beijing University of Aeronautics and Astronautics,2019,45(5):1042-1051. | |
12 | FUSARO R, FERRETTO D, VIOLA N. MBSE approach to support and formalize mission alternatives generation and selection processes for hypersonic and suborbital transportation systems[C]//Proc. of the IEEE International Systems Engineering Symposium, 2017. |
13 | MORDECAIY,ORHOFO,DORID.Model-based interoperability engineering in systems-of-systems and civil aviation[J].IEEE Trans. on Systems Man and Cybernetics Systems,2018,48(4):637-648. |
14 | BRUELJ,EBERSOLDS,GALINIERF,et al.The role of formalism in system requirements (full version)[J].ACM Computing Surveys,2021,54(5):1-36. |
15 | EVINE ULUDAGY.Bioanalytical device design with model-based systems engineering tools[J].IEEE Systems Journal,2020,14(3):3139-3149. |
16 | FOUSTJ.Gateway or bust: NASA's plan for a 2024 lunar landing depends on a much-criticized orbital outpost[J].IEEE Spectrum,2019,56(7):32-37. |
17 | WATSON-MORGAN L, HAWJINS L, JACOBS B, et al. NASA's artemis human landing systems[C]//Proc. of the IEEE Aerospace Conference, 2022. |
18 | BROWER E W, DELP C, KARBAN R, et al. OpenCAE case study: Europa lander concept: model-based systems engineering products in the OpenCAE model-based engineering environment with Europa lander as a case study[C]//Proc. of the Annual INCOSE International Workshop, 2019. |
19 | ODITA T, LOUISE-CABALLES M, CHEN G. Implementation of MBSE approach for developing reliability model to ensure robustness of sounding rocket program using MADE modeling tool[C]//Proc. of the 9th Annual World Conference of the Society for Industrial and Systems Engineering, 2020. |
20 | FAKIHM,KLEMPO,PUCHS,et al.A modeling method-ology for collaborative evaluation of future automotive innova tions[J].Software and Systems Modeling,2021,20(5):1587-1608. |
21 | KHARRATM,PENASO,PLATEAUXR,et al.Integration of electromagnetic constrains as of the conceptual design through an MBSE approach[J].IEEE Systems Journal,2021,15(1):747-758. |
22 | ERIC W B. OpenCAE case study: Europa lander concept[C]//Proc. of the Annual INCOSE International Workshop, 2019. |
23 | MAHMOOD N, CIMTALAY S, MAVRIS D N. Model-based systems engineering (MBSE) applied to fault detection analysis of vehicle subsystems[C]//Proc. of the IEEE Aerospace Conference, 2022. |
24 | BOGGERO L, CIAMPA P D, NAGEL B. An MBSE architectural framework for the agile definition of complex system architectures[C]//Proc. of the American Institute of Aeronautics and Astronautics Aviation Forum, 2022. |
25 | GRANDE M L, PATEL A S, DURBIN L D, et al. Modeling architectures and parameterization for spacecraft[C]//Proc. of the American Institute of Aeronautics and Astronautics Scitech Forum and Exposition, 2020. |
26 | WANGY,STEINBACHT,KLEINJ,et al.Integration of model-based system engineering into the digital twin concept[J].Procedia International Academy for Production Engineering,2021,100,19-24. |
27 | 吴立珍,牛轶峰.无人系统互操作性发展现状与关键问题[J].国防科技,2021,42(3):50-56. |
WUL Z,NIUY F.Development status and key issues of unmanned system interoperability[J].Defense Technology Revi ew,2021,42(3):50-56. | |
28 | 郑超,张冰.美军装备互操作性试验鉴定机制与流程分析[J].中国电子科学研究院学报,2021,16(8):828-833. |
ZHENGC,ZHANGB.The mechanism and process analysis of the US military equipment interoperability test and evaluation[J].Journal of China Academy of Electronics and Information Technology,2021,16(8):828-833. | |
29 | 王文峰,余雪梅,徐冬梅.无人系统互操作性标准化综述[J].中国标准化,2020,12,100-104. |
WANGW F,YUX M,XUD M.Overview of unmanned systems interoperability standardization[J].China Standardization,2020,12,100-104. | |
30 | 杜国红,陆树林,郑启.基于MBSE的作战概念建模框架研究[J].指挥控制与仿真,2020,42(3):14-20. |
DUG H,LUS L,ZHENGQ.Research on operation concept modeling framework based on MBSE[J].Command Control and Simulation,2020,42(3):14-20. |
[1] | 崔馨方, 陈祥文. MBSE在载人航天在轨物资补给任务中的应用[J]. 系统工程与电子技术, 2025, 47(5): 1551-1560. |
[2] | 王乾, 郑党党, 佟瑞庭, 韩冰, 杨小辉. 基于MBSE的民机飞行控制系统架构设计[J]. 系统工程与电子技术, 2024, 46(9): 3050-3059. |
[3] | 陈志兵, 邬恒, 罗战虎, 王建国. 基于MBSE的对流层飞艇运行概念研究[J]. 系统工程与电子技术, 2024, 46(3): 1004-1012. |
[4] | 董梦如, 王国新, 鲁金直, 马君达, 阎艳. 基于WordCloud技术的MBSE发展态势研究[J]. 系统工程与电子技术, 2024, 46(2): 534-548. |
[5] | 苗学问, 董骁雄, 钱征文, 胡杨, 李牧东. 基于DoDAF的航空装备智能保障系统体系结构建模[J]. 系统工程与电子技术, 2024, 46(2): 640-648. |
[6] | 戚亚群, 金平, 彭祺擘, 张海联, 蔡国飙. 基于模型的推进系统故障识别及建模方法[J]. 系统工程与电子技术, 2024, 46(12): 4062-4073. |
[7] | 朱景璐, 朱野, 李立, 郑轲. 基于MBSE的卫星能源系统设计与验证[J]. 系统工程与电子技术, 2024, 46(11): 3807-3819. |
[8] | 罗睿, 黄今辉, 王双双, 孔德照. 复杂软件系统双向耦合论证设计方法[J]. 系统工程与电子技术, 2024, 46(10): 3451-3461. |
[9] | 任浩亮, 张建超, 程会川. 基于SysML的武器装备体系能力需求建模分析方法[J]. 系统工程与电子技术, 2023, 45(9): 2843-2851. |
[10] | 黄冉, 彭祺擘, 武新峰, 倪庆. 基于DoDAF的载人登月体系结构建模[J]. 系统工程与电子技术, 2023, 45(7): 2131-2137. |
[11] | 高金艳, 汪路元, 潘忠石, 王虎妹. 火星维护与管理装置的MBSE架构建模[J]. 系统工程与电子技术, 2023, 45(5): 1441-1450. |
[12] | 武新峰, 彭祺擘, 黄冉, 李静琳. 基于MBSE的运载火箭上升段逃逸救生策略[J]. 系统工程与电子技术, 2023, 45(4): 1121-1126. |
[13] | 彭祺擘, 张海联. 基于模型的载人航天工程需求分析方法[J]. 系统工程与电子技术, 2023, 45(11): 3532-3543. |
[14] | 史文卿, 王海峰, 陈海昕. 战斗机无人机编组协同系统需求捕获与验证[J]. 系统工程与电子技术, 2023, 45(1): 108-118. |
[15] | 卢元杰, 刘志敏, 孙智孝, 阚东. 基于模型的无人机系统架构综合评估方法[J]. 系统工程与电子技术, 2022, 44(4): 1239-1245. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||