1 |
CHEN V C , LI F Y , HO S S , et al. Analysis of micro-Doppler signatures[J]. IEE Proceedings-Radar Sonar and Navigation, 2003, 150 (4): 271- 276.
doi: 10.1049/ip-rsn:20030743
|
2 |
CHEN V C , LI F Y , HO S S , et al. Micro-Doppler effect in radar phenomenon, model and simulation study[J]. IEEE Trans.on Aerospace and Electronic Systems, 2006, 42 (1): 2- 21.
|
3 |
CHEN V C . Doppler signatures of radar backscattering from objects with micro-motions[J]. IET Signal Processing, 2008, 2 (3): 291- 300.
doi: 10.1049/iet-spr:20070137
|
4 |
ZHANG Q , LUO Y , CHEN Y A . Micro-Doppler characteristics of radar targets[M]. London: Elsevier Press, 2016.
|
5 |
ZHANG Y P , ZHANG Q , KANG L , et al. End-to-end recognition of similar space cone-cylinder targets based on complex-va-lued coordinate attention networks[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 5106214.
|
6 |
ZHANG Y P , ZHANG L , KANG L , et al. Space target classification with corrupted HRRP sequences based on temporal-spatial feature aggregation network[J]. IEEE Trans.on Geoscience and Remote Sensing, 2023, 61, 5100618.
|
7 |
ZHANG Y P , XIE Y , KANG L , et al. Feature-level fusion recognition of space targets with composite micromotion[J]. IEEE Trans.on Aerospace and Electronic Systems, 2024, 60 (1): 934- 951.
doi: 10.1109/TAES.2023.3331339
|
8 |
LEE J I , KIM N , MIN S , et al. Space target classification improvement by generating micro-Doppler signatures considering incident angle[J]. Sensors, 2022, 22 (4): 1653.
doi: 10.3390/s22041653
|
9 |
HANIF A , MUAZ M , HASAN A , et al. Micro-Doppler based target recognition with radars: a review[J]. IEEE Sensors Journal, 2022, 22 (4): 2948- 2961.
doi: 10.1109/JSEN.2022.3141213
|
10 |
WANG Z H , LUO Y , LI K M , et al. Micro-Doppler parameters extraction of precession cone-shaped targets based on rotating antenna[J]. Remote Sensing, 2022, 14 (11): 2549.
doi: 10.3390/rs14112549
|
11 |
TIAN X D , BAI X R , XUE R H , et al. Fusion recognition of space targets with micro-motion[J]. IEEE Trans.on Aerospace and Electronic Systems, 2022, 58 (4): 3116- 3125.
doi: 10.1109/TAES.2022.3145303
|
12 |
罗迎, 柏又青, 张群, 等. 弹道目标平动补偿与微多普勒特征提取方法[J]. 电子与信息学报, 2012, 34 (3): 602- 608.
|
|
LUO Y , BAI Y Q , ZHANG Q , et al. Translational motion compensation and micro-Doppler feature extraction of ballistic targets[J]. Journal of Electronics & Information Technology, 2012, 34 (3): 602- 608.
|
13 |
GU F F , FU M H , LIANG B S , et al. Translational motion compensation and micro-Doppler feature extraction of space spinning targets[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (10): 1550- 1554.
|
14 |
LI J Q , HE S S , FENG C Q , et al. Method for compensating translational motion of rotationally symmetric target based on local symmetry cancellation[J]. Journal of Systems Engineering and Electronics, 2017, 28 (1): 36- 39.
doi: 10.21629/JSEE.2017.01.05
|
15 |
ZHUO Z Y , DU L , LU X F , et al. Ambiguity function based high-order translational motion compensation[J]. IEEE Trans.on Aerospace and Electronic Systems, 2023, 59 (2): 2013- 2019.
|
16 |
冯存前, 李江, 黄大荣, 等. 弹道中段不同平动多目标的平动参数估计方法[J]. 电子与信息学报, 2021, 43 (3): 564- 571.
|
|
FENG C Q , LI J , HUANG D R , et al. Estimation method of translational parameters for different translational of ballistic targets in midcourse[J]. Journal of Electronics & Information Technology, 2021, 43 (3): 564- 571.
|
17 |
SCHMID P J . Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656, 5- 28.
doi: 10.1017/S0022112010001217
|
18 |
寇家庆, 张伟伟, 高传强. 基于POD和DMD方法的跨声速抖振模态分析[J]. 航空学报, 2016, 37 (9): 2679- 2689.
|
|
KOU J Q , ZHANG W W , GAO C Q . Modal analysis of transonic buffet based on POD and DMD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37 (9): 2679- 2689.
|
19 |
SCHMID P J . Dynamic mode decomposition and its variants[J]. Annual Review of Fluid Mechanics, 2022, 54, 225- 254.
doi: 10.1146/annurev-fluid-030121-015835
|
20 |
ROWLEY C W , DAWSON S T M . Model reduction for flow analysis and control[J]. Annual Review of Fluid Mechanics, 2017, 49, 387- 417.
doi: 10.1146/annurev-fluid-010816-060042
|
21 |
BERGER E , SASTUBA M , VOGT D , et al. Estimation of perturbations in robotic behavior using dynamic mode decomposition[J]. Advanced Robotics: the International Journal of the Robotics Society of Japan, 2015, 29 (5/6): 331- 343.
|
22 |
郑建拥, 魏光辉. 基于多分辨率动态模态分解的电磁信号时频-能量分析[J]. 系统工程与电子技术, 2022, 44 (5): 1468- 1474.
|
|
ZHENG J Y , WEI G H . Time-frequency-energy analysis of electromagnetic signals based on multi-resolution dynamic modal decomposition[J]. Systems Engineering and Electronics, 2022, 44 (5): 1468- 1474.
|
23 |
BRUNTON B W , JOHNSON L A , OJEMANN J G , et al. Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition[J]. Journal of Neuroscience Methods, 2016, 258, 1- 15.
doi: 10.1016/j.jneumeth.2015.10.010
|
24 |
PROCTOR J L , ECKHOFF P A . Discovering dynamic patterns from infectious disease data using dynamic mode decomposition[J]. International Health, 2015, 7 (2): 139- 145.
doi: 10.1093/inthealth/ihv009
|
25 |
ROWLEY C W , MEZIC I , BAGHERI S , et al. Spectral analysis of nonlinear flows[J]. Journal of Fluid Mechanics, 2009, 641, 115- 127.
doi: 10.1017/S0022112009992059
|
26 |
寇家庆, 张伟伟. 动力学模态分解及其在流体力学中的应用[J]. 空气动力学报, 2018, 36 (2): 163- 179.
|
|
KOU J Q , ZHANG W W . Dynamic mode decomposition and its applications in fluid dynamics[J]. Acta Aerodynamica Sinica, 2018, 36 (2): 163- 179.
|
27 |
DRAGOMIRETSKIY K , ZOSSO D . Variational mode decomposition[J]. IEEE Trans.on Signal Processing, 2013, 62 (3): 531- 544.
|
28 |
WU Z H , HUANG N E . Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1 (1): 1- 41.
doi: 10.1142/S1793536909000047
|
29 |
KUTZ J N , BRUNTON S L , BRUNTON B W , et al. Dynamic mode decomposition: data-driven modeling of complex systems[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2016.
|
30 |
TU J H , ROWLEY C W , LUCHTENBERG D M , et al. On dynamic mode decomposition: theory and applications[J]. Journal of Computational Dynamics, 2014, 1 (2): 391- 421.
doi: 10.3934/jcd.2014.1.391
|
31 |
JOVANOVIC M R , SCHMID P J , NICHOLS J W . Sparsity-promoting dynamic mode decomposition[J]. Physics of Fluids, 2014, 26 (2): 024103.
doi: 10.1063/1.4863670
|