| 1 |
高一丁, 吴敏, 郝程鹏, 等. 基于FrFT-Keystone运动补偿的OFDM声纳高速微弱目标相参积累检测算法[J]. 系统工程与电子技术, 2024, 46 (4): 1157- 1166.
|
|
GAO Y D, WU M, HAO C P, et al. Coherent integration and detection algorithm for high-speed weak targets in OFDM sonar based on FrFT-Keystone motion compensation[J]. Systems Engineering and Electronics, 2024, 46 (4): 1157- 1166.
|
| 2 |
许彦伟, 薛勐, 刘明刚, 等. 多无人水下航行器协同探测声呐宽带波形设计与性能分析[J]. 电子与信息学报, 2023, 45 (10): 3796- 3804.
doi: 10.11999/JEIT221265
|
|
XU Y W, XUE M, LIU M G, et al. Wideband waveform design and performance analysis for multiple unmanned underwater vehicle cooperative detection sonar[J]. Journal of Electronics & Information Technology, 2023, 45 (10): 3796- 3804.
doi: 10.11999/JEIT221265
|
| 3 |
李启虎. 声呐信号处理引论 [M]. 北京: 科学出版社, 2012.
|
|
LI Q H. Introduction to sonar signal processing[M]. Beijing: Science Press, 2012.
|
| 4 |
YU G, YANG T C, PIAO S C. Estimating the delay-Doppler of target echo in a high clutter underwater environment using wideband linear chirp signals: evaluation of performance with experimental data[J]. The Journal of the Acoustical Society of America, 2017, 142 (4): 2047- 2057.
doi: 10.1121/1.5005888
|
| 5 |
KNIGHT W C, PRIDHAM R G, KAY S M. Digital signal processing for sonar[J]. Proceedings of the IEEE, 1981, 69 (11): 1451- 1506.
doi: 10.1109/PROC.1981.12186
|
| 6 |
LERDA O, MIAN A, GINOLHAC G, et al. Robust detection for mills cross sonar[J]. IEEE Journal of Oceanic Engineering, 2024, 49 (3): 1009- 1024.
doi: 10.1109/JOE.2024.3374958
|
| 7 |
WU M, HAO C P, HU Q, et al. Sparsity-based processing to enhance the reverberation suppression for FDA-MIMO sonars[J]. IEEE Trans. on Aerospace and Electronic Systems, 2024, 60 (2): 1556- 1569.
doi: 10.1109/TAES.2023.3336852
|
| 8 |
张舒皓, 马晓川, 杨力, 等. 基于多片高性能DSP的主动声呐低速运动小目标探测系统[J]. 水下无人系统学报, 2019, 27 (6): 636- 643.
|
|
ZHANG S H, MA X C, YANG L, et al. Multi-chip DSP system for active sonar detecting low-speed small targets[J]. Journal of Unmanned Undersea Systems, 2019, 27 (6): 636- 643.
|
| 9 |
李宾. 基于多核DSP的声呐信号处理机系统设计 [D]. 北京: 中国科学院大学, 2013.
|
|
LI B. Design of sonar signal processing system based on multi-core DSPs [D]. Beijing: University of Chinese Academy of Sciences, 2013.
|
| 10 |
汲夏, 丛卫华, 杜栓平. 基于C6678多核数字信号处理器的声纳信号并行处理设计[J]. 兵工学报, 2016, 37 (8): 1476- 1481.
doi: 10.3969/j.issn.1000-1093.2016.08.020
|
|
JI X, CONG W H, DU S P. Sonar signal processing parallel design based on C6678 multicore DSP[J]. Acta Armamentarii, 2016, 37 (8): 1476- 1481.
doi: 10.3969/j.issn.1000-1093.2016.08.020
|
| 11 |
刘纪元, 李淑秋, 李丽英, 等. 合成孔径声呐并行实时处理研究[J]. 电子与信息学报, 2003, (6): 777- 783.
|
|
LIU J Y, LI S Q, LI L Y, et al. Study on real-time and parallel implementation of synthetic aperture sonar signal processing[J]. Journal of Electronics & Information Technology, 2003, (6): 777- 783.
|
| 12 |
王朋, 任宇飞, 黄勇, 等. 基于TMS320C6678三维成像声纳信号处理算法的设计与实现[J]. 海军工程大学学报, 2014, 26 (2): 85- 90,112.
|
|
WANG P, REN Y F, HUANG Y, et al. Design and implementation of 3D acoustical imaging sonar signal processing method based on TMS320C6678[J]. Journal of Naval University of Engineering, 2014, 26 (2): 85- 90,112.
|
| 13 |
LIU X, WANG J Y. Design of multi-channel signal acquisition and transmission unit based on multi-core DSP[C]// Proc. of the OES China Ocean Acoustics Conference, 2021.
|
| 14 |
YANG X, ZHUANG C, FENG W Q, et al. FPGA implementation of a deep learning acceleration core architecture for image target detection[J]. Applied Sciences, 2023, 13 (7): 4144.
|
| 15 |
连红飞, 李东升, 蒋彦雯, 等. 一种伯努利粒子滤波器的FPGA实现[J]. 系统工程与电子技术, 2024, 47 (2): 398- 406.
|
|
LIAN H F, LI D S, JIANG Y W, et al. FPGA implementation of a Bernoulli particle filter[J]. Journal of Systems Engineering and Electronics, 2024, 47 (2): 398- 406.
|
| 16 |
GONG L, WANG C, LI X, et al. Improving HW/SW adaptability for accelerating CNNs on FPGAs through a dynamic/static co-reconfiguration approach[J]. IEEE Trans. on Parallel and Distributed Systems, 2021, 32 (7): 1854- 1865.
doi: 10.1109/TPDS.2020.3046762
|
| 17 |
YANG T, ZHANG X Y, XU Q, et al. An embedded-GPU-based scheme for real-time imaging processing of unmanned aerial vehicle borne video synthetic aperture radar[J]. Remote Sensing, 2024, 16 (1): 191.
doi: 10.3390/rs16010191
|
| 18 |
SANFORD C J, THOMAS B W, HUNTER A J. Fourier-domain wavefield rendering for rapid simulation of synthetic aperture sonar data[J]. IEEE Journal of Oceanic Engineering, 2024, 49 (4): 1501- 1515.
|
| 19 |
李晓敏, 侯朝焕, 鄢社锋. 一种基于GPU的主动声纳宽带信号处理实时系统[J]. 传感技术学报, 2011, 24 (9): 1279- 1283.
doi: 10.3969/j.issn.1004-1699.2011.09.011
|
|
LI X M, HOU C H, YAN S F. A real-time signal processing system of broadband active sonar based on GPU[J]. Chinese Journal of Sensors and Actuators, 2011, 24 (9): 1279- 1283.
doi: 10.3969/j.issn.1004-1699.2011.09.011
|
| 20 |
BUSKENES J I, ÅSEN J P, NILSEN C I C, et al. An optimized GPU implementation of the MVDR beamformer for active sonar imaging[J]. IEEE Journal of Oceanic Engineering, 2015, 40 (2): 441- 451.
doi: 10.1109/JOE.2014.2320631
|
| 21 |
詹飞, 马晓川, 杨力. 众核处理架构在水下航行器相位编码脉冲回波检测中的应用[J]. 声学学报, 2018, 43 (4): 445- 452.
|
|
ZHAN F, MA X C, YANG L. Application of many-core processing architecture to echo detection of phase-coded pulse for autonomous underwater vehicle[J]. ACTA ACUSTICA, 2018, 43 (4): 445- 452.
|
| 22 |
ADVANCED MICRO DEVICES. Zynq UltraScale+ MPSoC data sheet: overview[EB/OL]. [2024-08-04]. https://www.amd.com/content/dam/xilinx/support/documents/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf.
|
| 23 |
ADVANCED MICRO DEVICES. Zynq UltraScale+ device technical reference manual [EB/OL]. [2024-08-04]. https: //docs.amd.com/r/en-US/ug1085-zynq-ultrascale-trm.
|
| 24 |
李强, 武文波, 何明一. 基于MPSoC的遥感图像目标检测算法硬件加速研究[J]. 航天返回与遥感, 2022, 43 (1): 58- 68.
doi: 10.3969/j.issn.1009-8518.2022.01.006
|
|
LI Q, WU W B, HE M Y. Accelerator of remote sensing image object detection based on MPSoC[J]. Spacecraft Recovery & Remote Sensing, 2022, 43 (1): 58- 68.
doi: 10.3969/j.issn.1009-8518.2022.01.006
|
| 25 |
PéREZ A, RODRíGUEZ A, OTERO A, et al. Run-time reconfigurable MPSoC-based on-board processor for vision-based space navigation[J]. IEEE Access, 2020, 8, 59891- 59905.
doi: 10.1109/ACCESS.2020.2983308
|
| 26 |
WIEHLE S, MANDAPATI S, GUNZEL D, et al. Synthetic aperture radar image formation and processing on an MPSoC[J]. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60
|
| 27 |
王康景. 基于ZYNQ MPSOC的实时高分辨率SAR成像处理系统 [D]. 西安: 西安电子科技大学, 2020.
|
|
WANG K J. Real-time and high-resolution SAR imaging processing system based on ZYNQ MPSOC [D]. Xi’an: Xidian University, 2020.
|
| 28 |
阚成良. AUV载多波束声呐接收系统硬件平台设计与实现[D]. 哈尔滨: 哈尔滨工程大学, 2019.
|
|
KAN C L. Design and implementation of hardware platform for multi-beam sonar receiving system with AUV[D]. Harbin: Harbin Engineering University, 2019.
|
| 29 |
田坦. 声呐技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 2010: 10−20.
|
|
TIAN T. Sonar technology[M]. Harbin: Harbin Engineering University Press, 2010: 10−20.
|
| 30 |
KELLY E, WISHNER R. Matched-filter theory for high-velocity, accelerating targets[J]. IEEE Trans. on Military Electronics, 1965, 9 (1): 56- 69.
doi: 10.1109/TME.1965.4323176
|
| 31 |
DATTA D, DUTTA H S. Hardware optimized digital down converter for multi-standard radio receiver[J]. Analog Integrated Circuits and Signal Processing, 2024, 118 (3): 567- 575.
doi: 10.1007/s10470-023-02227-y
|
| 32 |
鄢社锋, 马晓川. 宽带波束形成器的设计与实现[J]. 声学学报, 2008, 33 (4): 316- 326.
|
|
YAN S F, MA X C. Designs and implementations of broadband beamformers[J]. ACTA ACUSTICA, 2008, 33 (4): 316- 326.
|
| 33 |
DONG H T, MA S L, SUO J, et al. Matched stochastic resonance enhanced underwater passive sonar detection under non-Gaussian impulsive background noise[J]. Sensors, 2024, 24 (9): 2943.
doi: 10.3390/s24092943
|
| 34 |
LEPPINEN H. Current use of Linux in spacecraft flight software[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32 (10): 4- 13.
doi: 10.1109/MAES.2017.160182
|
| 35 |
HANS J K. The userspace I/O HOWTO [EB/OL]. [2024-08-04]. https://www.kernel.org/doc/html/latest/driver-api/uio-howto.html.
|