系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (2): 341-351.doi: 10.12305/j.issn.1001-506X.2025.02.01
• 电子技术 •
陈昊然1,2, 王天昊1,2, 路美娜2,*, 宋茂新2, 罗环2, 吴晓宇2, 骆冬根2, 裘桢炜2
收稿日期:
2024-03-11
出版日期:
2025-02-25
发布日期:
2025-03-18
通讯作者:
路美娜
作者简介:
陈昊然 (2000—), 女, 硕士研究生, 主要研究方向为图像采集及数据处理Haoran CHEN1,2, Tianhao WANG1,2, Meina LU2,*, Maoxin SONG2, Huan LUO2, Xiaoyu WU2, Donggen LUO2, Zhenwei QIU2
Received:
2024-03-11
Online:
2025-02-25
Published:
2025-03-18
Contact:
Meina LU
摘要:
针对高精度位移传感器对高速位移测量算法的运行速度、可移植性及降低研发成本的需求, 提出一种基于高层次综合(high-level synthesis, HLS)技术的高精度测量算法的硬件加速设计方法。使用HLS技术实现C++语言到Verilog语言的综合, 针对高精度位移测量算法设计策略, 利用HLS技术中的流水化和数组重构等优化技术进行硬件加速, 并将其封装为知识产权(intellectual property, IP)核, 提高算法的可移植性。以Xilinx公司的Kintex-7系列现场可编程门阵列(field-programmable gate array, FPGA)芯片XC7K325TFFG676为载体的测量系统实验结果表明, 整个算法耗时91.8 μs, 相比数字信号处理(digital signal processor, DSP)单元将运行时间缩短了308.2 μs, 测量精度达到44.44 nm, 稳定性为49.20 nm, 线性度为0.503‰。
中图分类号:
陈昊然, 王天昊, 路美娜, 宋茂新, 罗环, 吴晓宇, 骆冬根, 裘桢炜. 基于HLS的高精度位移测量算法的硬件加速设计[J]. 系统工程与电子技术, 2025, 47(2): 341-351.
Haoran CHEN, Tianhao WANG, Meina LU, Maoxin SONG, Huan LUO, Xiaoyu WU, Donggen LUO, Zhenwei QIU. High-precision displacement measurement algorithm based on HLS for hardware acceleration design[J]. Systems Engineering and Electronics, 2025, 47(2): 341-351.
1 | 李清泉, 陈睿哲, 涂伟, 等. 基于惯性相机的大跨度桥梁线形形变实时测量方法[J]. 武汉大学学报, 2023, 48 (11): 1834- 1843. |
LI Q Q , CHEN R Z , TU W , et al. Real-time vision-based deformation measurement of long-span bridge with inertial sensors[J]. Geomatics and Information Science of Wuhan University, 2023, 48 (11): 1834- 1843. | |
2 | 丁孺琦, 王振, 程敏, 等. 基于模型控制的液压机械臂高精度轨迹跟踪[J]. 机械工程学报, 2023, 59 (14): 298- 309. |
DING R Q , WANG Z , CHENG M , et al. Model-based control of the hydraulic manipulator for the high-precision trajectory tracking[J]. Journal of Mechanical Engineering, 2023, 59 (14): 298- 309. | |
3 |
GAO W , KIM S W , BOSSE H , et al. Measurement technologies for precision positioning[J]. CIRP Annals, 2015, 64 (2): 773- 796.
doi: 10.1016/j.cirp.2015.05.009 |
4 | 杨宏兴, 付海金, 胡鹏程, 等. 超精密高速激光干涉位移测量技术与仪器[J]. 激光与光电子学进展, 2022, 59 (9): 305- 319. |
YANG H X , FU H J , HU P C , et al. Ultra-precision and high-speed laser interferometric displacement measurement technology and instrument[J]. Laser Optoelectron Progress, 2022, 59 (9): 305- 319. | |
5 |
GEORGIS G , LENTARIS G , REISIS D . Acceleration techniques and evaluation on multi-core CPU, GPU and FPGA for image processing and super-resolution[J]. Journal of Real-Time Image Processing, 2019, 16 (4): 1207- 1234.
doi: 10.1007/s11554-016-0619-6 |
6 | NAZ N , MALIK H A , KHURSHID A B , et al. Efficient processing of image processing applications on CPU/GPU[J]. Mathe- matical Problems in Engineering, 2020, 2020 (1): 4839876. |
7 | 谭鹏源, 薛长斌, 周莉. 基于嵌入式CPU+GPU异构平台的遥感图像滤波加速[J]. 空间科学学报, 2024, 44 (1): 95- 102. |
TAN P Y , XUE C B , ZHOU L . Acceleration of remote sensing image filtering based on embedded CPU+GPU heterogeneous platform[J]. Chinese Journal of Space Science, 2024, 44 (1): 95- 102. | |
8 | HUANG F , CHEN S Y , WANG Q , et al. Using deep learning in an embedded system for real-time target detection based on images from an unmanned aerial vehicle: vehicle detection as a case study[J]. International Journal of Digital Earth, 2023, 16 (1): 910- 936. |
9 | WOJENSKI A , ZBROSZCZYK H , KRUSZEWSKI M , et al. Hardware acceleration of complex HEP algorithms with HLS and FPGAs: methodology and preliminary implementation[J]. Computer Physics Communications, 2024, 295, 108997. |
10 | 赵鹏, 程光, 赵德宇. 基于FPGA的高性能可编程数据平面研究综述[J]. 软件学报, 2023, 34 (11): 5330- 5354. |
ZHAO P , CHENG G , ZHAO D Y . Survey on FPGA-based high-performance programmable data plane[J]. Journal of Software, 2023, 34 (11): 5330- 5354. | |
11 | ASANO S, MARUYAMA T, YAMAGUCHI Y. Performance comparison of FPGA, GPU and CPU in image processing[C]//Proc. of the IEEE International Conference on Field Progra-mmable Logic and Applications, 2009: 126-131. |
12 | 李博杰. 基于可编程网卡的高性能数据中心系统[D]. 合肥: 中国科学技术大学, 2019. |
LI B J. High performance data center systems with programmable network interface cards[D]. Hefei: University of Science and Technology of China, 2019. | |
13 | SRIDHARAN S, DURANTE P, FAERBER C, et al. Accele-rating particle identification for high-speed data-filtering using OpenCL on FPGAs and other architectures[C]//Proc. of the IEEE 26th International Conference on Field Programmable Logic and Applications, 2016. |
14 | 周全. 基于FPGA和DSP架构的实时高速图像处理系统的硬件平台设计[D]. 重庆: 重庆理工大学, 2016. |
ZHOU Q. The hardware platform design of high-speed real-time image processing system based on DSP and FPGA[D]. Chongqing: Chongqing University of Technology, 2016. | |
15 | LI Y, ZHAO X D, CHENG T R. Heterogeneous computing platform based on CPU+FPGA and working modes[C]//Proc. of the IEEE 12th International Conference on Computational Intelligence and Security, 2016: 669-672. |
16 | YANG Z P, JI S X, CHEN X Z, et al. Challenges and opportunities to enable large-scale compuating via heterogeneous chiplets[C]//Proc. of the 29th Asia and South Pacific Design Automation Conference, 2024: 765-770. |
17 | HAJIRASSOULIHA A , TABERNER A J , NASH M P , et al. Suitability of recent hardware accelerators (DSPs, FPGAs, and GPUs) for computer vision and image processing algorithms[J]. Signal Processing: Image Communication, 2018, 68, 101- 119. |
18 | 赵子豪, 骆冬根, 路美娜, 等. 基于SOPC的检焦图像实时处理系统设计[J]. 电子测量技术, 2022, 45 (9): 31- 37. |
ZHAO Z H , LUO D G , LU M N , et al. Design of real-time processing system of focus detection image based on SOPC[J]. Electric Measurement Technology, 2024, 45 (9): 31- 37. | |
19 | SU S F , CHANG M W . Adaptive neural acceleration unit based on heterogeneous multicore hardware architecture FPGA and software-defined hardware[J]. Journal of the Chinese Institute of Engineers, 2024, 47 (3): 337- 350. |
20 | 徐诚, 郭进阳, 李超, 等. 使用HLS开发FPGA异构加速系统: 问题、优化方法和机遇[J]. 计算机科学与探索, 2023, 17 (8): 1729- 1748. |
XU C , GUO J Y , LI C , et al. Using HLS to develop FPGA hetero- geneous acceleration system: problems, optimization methods and opportunities[J]. Journal of Frontiers of Computer Science & Technology, 2023, 17 (8): 1729- 1748. | |
21 | SOHRABIZADEH A, WANG J, CONG J. End-to-end optimization of deep learning applications[C]//Proc. of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2020: 133-139. |
22 | LIU X H, CHEN Y, NGUYEN T, et al. High level synthesis of complex applications: an H. 264 video decoder[C]//Proc. of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2016: 224-233. |
23 | HU Y W, DU Y X, USTUN E, et al. GraphLily: accelerating graph linear algebra on HBM-equipped FPGAs[C]//Proc. of the IEEE/ACM International Conference on Computer Aided Design, 2021. |
24 | LIANG X R, ZENG J S, GUO X, et al. Optimization of laser spot center detection based on laser triangulation[C]//Proc. of the 3rd International Conference on Optics and Image Processing, 2023. |
25 | 倪沛东. 基于激光三角法的目标位移测量方法及系统设计[D]. 太原: 中北大学, 2023. |
NI P D. Target displacement measurement method and system design based onlaser triangulation[D]. Taiyuan: North University of China, 2023. | |
26 | ZHANG Q J , ZHAO Y H . Measurement method of laser spot center based on weight interpolation algorithm[J]. Laser & Infrared, 2016, 46 (1): 81- 84. |
27 | XIAO M F, ZHANG Y M, LI H. High-precision spot position- ing algorithm based on four-quadrant detector[C]//Proc. of the Journal of Physics: Conference Series, 2020, 1633(1): 012122. |
28 | ZHOU P, WANG X Q, HUANG Q Y, et al. Laser spot center detection based on improved circled fitting algorithm[C]//Proc. of the 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Confe-rence, 2018: 316-319. |
29 | ZENG K, LI Y L, XIONG Y Z. A signal denoising system for CCD spectrometer based on FPGA[C]//Proc. of the 4th International Conference on Signal Processing and Computer Science, 2023, 12970: 455-462. |
30 | GAO R H , LIU H S , ZHAO Y , et al. High-precision laser spot center positioning method for weak light conditions[J]. Applied Optics, 2020, 59 (6): 1763- 1768. |
31 | ZHAO H L , WANG S Z , SHEN W , et al. Laser spot centering algorithm of double-area shrinking iteration based on baseline method[J]. Applied Sciences, 2022, 12 (21): 11302. |
32 | XU P F , JIA Y J . SNR improvement based on piecewise linear interpolation[J]. Journal of Electrical Engineering, 2021, 72 (5): 348- 351. |
33 | BAILEY D G . Design for embedded image processing on FPGAs[M]. New Jersey: Wiley, 2023. |
34 | PENG X X , TANG Y , LI J F , et al. FPGA-based CCD signal acquisition and transmission system design[J]. Scientific Reports, 2024, 14 (1): 1855. |
35 | BOYLE S, GUNDERSON A, ORLANDIC M. High-level FPGA design of deep learning hyperspectral anomaly detection[C]// Proc. of the IEEE Nordic Circuits and Systems Conference, 2023. |
36 | SHAO Z Y . An FPGA-based adaptive solution for synchronous configuration in UART communication[J]. Highlights in Science, Engineering and Technology, 2024, 81, 615- 622. |
37 | NOROUZI M, ILIAS Q, JANNESARI A, et al. Accelerating data-dependence profiling with static hints[C]//Proc. of the 25th International Conference on Parallel and Distributed Computing, 2019: 17-28. |
38 | 李朝帅. 面向多分支语句的自动重构方法研究[D]. 石家庄: 河北科技大学, 2024. |
LI Z S. An automated refactoring approach for multi-branch statement[D]. Shijiazhuang: Hebei University of Science and Technology, 2024. |
[1] | 刘永庆, 刘鹏, 云日升, 张祥坤, 王特. 海洋4A散射计幅相校正算法FPGA优化实现[J]. 系统工程与电子技术, 2024, 46(8): 2554-2562. |
[2] | 汪敏, 冯一伦, 蒋彦雯, 范红旗. 雷达波形通用调制引擎设计[J]. 系统工程与电子技术, 2023, 45(6): 1684-1692. |
[3] | 安辉耀1, 刘敦伟1,2, 耿瑞华3, 曾和平4, 赵林欣1. #br# 量子通信系统中基于FPGA的偏振控制[J]. 系统工程与电子技术, 2016, 38(8): 1917-1921. |
[4] | 樊养余,于泽琦,袁永金,吕国云. 基于FPGA的高性能D类功放控制器#br# 设计与实现[J]. 系统工程与电子技术, 2014, 36(4): 630-636. |
[5] | 唐林波, 陶芬芳, 赵保军, 刘嘉骏. 基于FPGA的实时整数霍夫变换[J]. Journal of Systems Engineering and Electronics, 2012, 34(3): 610-613. |
[6] | 刘光祖, 王建新, 徐达龙. 数字信道化接收机高效结构的设计与实现[J]. Journal of Systems Engineering and Electronics, 2012, 34(2): 391-395. |
[7] | 黄杰文,祁海明,李早社,禹卫东. 星载SAR中频数字接收机的FPGA设计与实现[J]. Journal of Systems Engineering and Electronics, 2011, 33(4): 769-773. |
[8] | 罗海坤, 吴嗣亮, 王永庆. 基于改进ziggurat算法的高斯白噪声发生器[J]. Journal of Systems Engineering and Electronics, 2011, 33(4): 879-883. |
[9] | 杨保平,陈永光,陈军,徐忠富. 基于FPGA的战术数据链中继传输复接技术[J]. Journal of Systems Engineering and Electronics, 2010, 32(12): 2628-2631. |
[10] | 王虹现, 全英汇, 邢孟道, 张守宏. 基于FPGA的SAR回波仿真快速实现方法[J]. Journal of Systems Engineering and Electronics, 2010, 32(11): 2284-2289. |
[11] | 王永明, 王世练, 张尔扬. 1.2 GSPS数字信道化接收机的设计与实现[J]. Journal of Systems Engineering and Electronics, 2009, 31(6): 1324-1327. |
[12] | 叶有时,唐林波,赵保军,蔡晓芳. 基于SOPC的深空目标实时跟踪系统[J]. Journal of Systems Engineering and Electronics, 2009, 31(12): 3002-3006. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||