| 1 | 
																						 
											  茹鑫鑫, 高晓光, 王阳阳.  基于模糊约束的贝叶斯网络参数学习[J]. 系统工程与电子技术, 2023, 45 (2): 444- 452. 
											 											 | 
										
																													
																						 | 
																						 
											   RU X X ,  GAO S G ,  WANG Y Y .  Bayesian network parameter learning based on fuzzy constraints[J]. Systems Engineering and Electronics, 2023, 45 (2): 444- 452. 
											 											 | 
										
																													
																						| 2 | 
																						 
											   SOLOVIEV V P ,  BIELZA C ,  LARRANAGA P .  Quantum approximate optimization algorithm for Bayesian network structure learning[J]. Quantum Information Processing, 2022, 22 (1): 19- 47. 
											 												 
																									doi: 10.1007/s11128-022-03769-2
																																			 											 | 
										
																													
																						| 3 | 
																						 
											   MARELLA D ,  VICARD P .  Bayesian network structural learning from complex survey data: a resampling based approach[J]. Statistical Methods & Applications, 2022, 31 (4): 981- 1013.
											 											 | 
										
																													
																						| 4 | 
																						 
											   ADABOR E S ,  ACQUAAH-MENSAH G K ,  ODURO F T .  SAGA: a hybrid search algorithm for Bayesian Network structure learning of transcriptional regulatory networks[J]. Journal of Biomedical Informatics, 2015, 54 (1): 27- 35.
											 											 | 
										
																													
																						| 5 | 
																						 
											   ZHANG X Y ,  XUE Y Y ,  LU X Y , et al.  Differential-evolution-based coevolution ant colony optimization algorithm for Bayesian network structure learning[J]. Algorithms, 2018, 11 (11): 188- 204. 
											 												 
																									doi: 10.3390/a11110188
																																			 											 | 
										
																													
																						| 6 | 
																						 
											  汪春峰, 张永红.  基于无约束优化和遗传算法的贝叶斯网络结构学习方法[J]. 控制与决策, 2013, 28 (4): 618- 622. 
											 											 | 
										
																													
																						 | 
																						 
											   WANG C F ,  ZHANG Y H .  Bayesian network structure learning based on unconstrained optimization and genetic algorithm[J]. Control and Decisioin, 2013, 28 (4): 618- 622. 
											 											 | 
										
																													
																						| 7 | 
																						 
											  邸若海, 高晓光.  基于限制型粒子群优化的贝叶斯网络结构学习[J]. 系统工程与电子技术, 2011, 33 (11): 2423- 2427. 
											 											 | 
										
																													
																						 | 
																						 
											   DI R H ,  GAO X G .  Bayesian network structure learning based on restricted particle swarm optimization[J]. Systems Engineering and Electronics, 2011, 33 (11): 2423- 2427. 
											 											 | 
										
																													
																						| 8 | 
																						 
											  李明, 张韧, 洪梅, 等.  基于信息流改进的贝叶斯网络结构学习算法[J]. 系统工程与电子技术, 2018, 40 (6): 1385- 1390. 
											 											 | 
										
																													
																						 | 
																						 
											   LI M ,  ZHANG R ,  HONG M , et al.  Improved structure learning algorithm of Bayesian network based on information flow[J]. Systems Engineering and Electronics, 2018, 40 (6): 1385- 1390. 
											 											 | 
										
																													
																						| 9 | 
																						 
											   HU L ,  YANG S C ,  LUO X , et al.  A distributed framework for large-scale protein-protein interaction data analysis and prediction using mapreduce[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 9 (1): 160- 172.
											 											 | 
										
																													
																						| 10 | 
																						 
											   CHAUDHURY M ,  KARAMI A ,  GHAZANFAR M A .  Large-scale music genre analysis and classification using machine learning with apache spark[J]. Electronics, 2022, 11 (16): 2567- 2598. 
											 												 
																									doi: 10.3390/electronics11162567
																																			 											 | 
										
																													
																						| 11 | 
																						 
											   KHANTEYMOORI A R ,  OLYAEE M H ,  ABBASZ-ADEH O , et al.  A novel method for Bayesian networks structure learning based on breeding swarm algorithm[J]. Soft Computing, 2018, 22 (9): 3049- 3060. 
											 												 
																									doi: 10.1007/s00500-017-2557-z
																																			 											 | 
										
																													
																						| 12 | 
																						 
											   WANG J Y ,  LIU S Y .  A novel discrete particle swarm optimization algorithm for solving Bayesian network structures learning problem[J]. International Journal of Computer Mathematics, 2019, 96 (12): 2423- 2440. 
											 												 
																									doi: 10.1080/00207160.2019.1566535
																																			 											 | 
										
																													
																						| 13 | 
																						 
											   LEE J H ,  CHUNG W Y ,  KIM E T , et al.  A new genetic approach for structure learning of Bayesian networks: matrix genetic algorithm[J]. International Journal of Control, Automation and Systems, 2010, 8 (2): 398- 407. 
											 												 
																									doi: 10.1007/s12555-010-0227-3
																																			 											 | 
										
																													
																						| 14 | 
																						 
											 VAFAEE F. Learning the structure of large-scale Bayesian networks using genetic algorithm[C]//Proc. of the Annual Conference on Genetic and Evolutionary Computation, 2014: 855-862.
											 											 | 
										
																													
																						| 15 | 
																						 
											   LIU K ,  CUI Y ,  REN J , et al.  An improved particle swarm optimization algorithm for Bayesian network structure learning via local information constraint[J]. IEEE Access, 2021, 9, 40963- 40971. 
											 												 
																									doi: 10.1109/ACCESS.2021.3065532
																																			 											 | 
										
																													
																						| 16 | 
																						 
											   SUN B ,  ZHOU Y ,  WANG J J , et al.  A new PC-PSO algorithm for Bayesian network structure learning with structure priors[J]. Expert Systems with Applications, 2021, 184, 115237. 
											 												 
																									doi: 10.1016/j.eswa.2021.115237
																																			 											 | 
										
																													
																						| 17 | 
																						 
											   SUN B D ,  ZHOU Y .  Bayesian network structure learning with improved genetic algorithm[J]. International Journal of Intelligent Systems, 2022, 37 (9): 6023- 6047. 
											 												 
																									doi: 10.1002/int.22833
																																			 											 | 
										
																													
																						| 18 | 
																						 
											   MADSEN A L ,  JENSEN F ,  SALMERON A , et al.  A parallel algorithm for Bayesian network structure learning from large data sets[J]. Knowledge-Based Systems, 2017, 117, 46- 55. 
											 												 
																									doi: 10.1016/j.knosys.2016.07.031
																																			 											 | 
										
																													
																						| 19 | 
																						 
											   LEE S ,  KIM S B .  Parallel simulated annealing with a greedy algorithm for Bayesian network structure learning[J]. IEEE Trans.on Knowledge and Data Engineering, 2019, 32 (6): 1157- 1166.
											 											 | 
										
																													
																						| 20 | 
																						 
											   LI S ,  WANG B .  Hybrid parrallel Bayesian network structure learning from massive data using MapReduce[J]. Journal of Signal Processing Systems, 2018, 90 (8/9): 1115- 1121.
											 											 | 
										
																													
																						| 21 | 
																						 
											   CHEN X W ,  ANANTHA G ,  LIN X T .  Improving Bayesian network structure learning with mutual information-based node ordering in the K2 algorithm[J]. IEEE Trans.on Knowledge and Data Engineering, 2008, 20 (5): 628- 640. 
											 												 
																									doi: 10.1109/TKDE.2007.190732
																																			 											 | 
										
																													
																						| 22 | 
																						 
											   XIE X L ,  XIE B Q ,  XIONG D , et al.  New theoretical ISM-K2 Bayesian network model for evaluating vaccination effectiveness[J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (9): 12789- 12805. 
											 												 
																									doi: 10.1007/s12652-022-04199-9
																																			 											 | 
										
																													
																						| 23 | 
																						 
											  李昡熠, 周鋆.  基于频繁项挖掘的贝叶斯网络结构学习算法BNSL-FIM[J]. 计算机应用, 2021, 41 (12): 3475- 3479. 
											 											 | 
										
																													
																						 | 
																						 
											   LI X Y ,  ZHOU Y .  BNSL-FIM: Bayesian network structure learning algorithm based on frequent item mining[J]. Journal of Computer Applications, 2021, 41 (12): 3475- 3479. 
											 											 | 
										
																													
																						| 24 | 
																						 
											   PROENÇA H M ,  GRUNWALD P ,  BACK T , et al.  Robust subgroup discovery: discovering subgroup lists using MDL[J]. Data Miningand Knowledge Discovery, 2022, 36 (5): 1885- 1970. 
											 												 
																									doi: 10.1007/s10618-022-00856-x
																																			 											 | 
										
																													
																						| 25 | 
																						 
											   LIAO T F ,  FASANG A E .  Comparing groups of life-course sequences using the Bayesian information criterion and the likelihood- ratio test[J]. Sociological Methodology, 2021, 51 (1): 44- 85. 
											 												 
																									doi: 10.1177/0081175020959401
																																			 											 | 
										
																													
																						| 26 | 
																						 
											 ZHANG W J, FANG W, SUN J, et al. Learning Bayesian networks structures with an effective knowledge-driven GA[C]// Proc. of the IEEE Congress on Evolutionary Computation, 2020.
											 											 | 
										
																													
																						| 27 | 
																						 
											   CONTALDI C ,  VAFAEE F ,  NELSON P C .  Bayesian network hybrid learning using an elite-guided genetic algorithm[J]. Artificial Intelligence Review, 2019, 52 (1): 245- 272. 
											 												 
																									doi: 10.1007/s10462-018-9615-5
																																			 											 | 
										
																													
																						| 28 | 
																						 
											 CONTALDI C, VAFAEE F, NELSON P C. The role of crossover operator in Bayesian network structure learning performance: a comprehensive comparative study and new insights[C]// Proc. of the Genetic and Evolutionary Computation Conference, 2017: 769-776.
											 											 | 
										
																													
																						| 29 | 
																						 
											 JOSE S, LIU S, LOUIS S, et al. Towards a hybrid approach for evolving Bayesian networks using genetic algorithms[C]//Proc. of the IEEE 31st International Conference on Tools with Artificial Intelligence, 2019: 705-712.
											 											 | 
										
																													
																						| 30 | 
																						 
											   YAN K F ,  FANG W ,  LU H Y , et al.  Mutual information-guided GA for Bayesian network structure learning[J]. IEEE Trans.on Knowledge and Data Engineering, 2022, 35 (8): 8282- 8299.
											 											 |