

系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (2): 534-548.doi: 10.12305/j.issn.1001-506X.2024.02.18
• 系统工程 • 上一篇
董梦如1, 王国新1, 鲁金直2,*, 马君达1, 阎艳1
收稿日期:2022-09-07
出版日期:2024-01-25
发布日期:2024-02-06
通讯作者:
鲁金直
作者简介:董梦如(1999—), 女, 硕士研究生, 主要研究方向为基于模型的系统工程Mengru DONG1, Guoxin WANG1, Jinzhi LU2,*, Junda MA1, Yan YAN1
Received:2022-09-07
Online:2024-01-25
Published:2024-02-06
Contact:
Jinzhi LU
摘要:
基于IEEE及国际系统工程协会(International Council on Systems Engineering, INCOSE)社区会刊, 提取与基于模型的系统工程(model based systems engineering, MBSE)领域相关的167篇顶刊的关键词和摘要。采用Python及其第三方库WordCloud技术, 以可视化形式展示MBSE领域研究内容并对MBSE发展态势进行研究。研究结果表明, MBSE在产品研发全生命周期, 应用建模技术来支持系统需求、设计、分析、验证与确认等活动, 在系统架构设计方面具有重要作用, 将MBSE与安全性分析、可靠性分析方法结合也是MBSE的重要研究内容; 系统建模语言(system modeling language, SysML)和对象过程方法(object process method, OPM)分别是目前MBSE研究领域中最受欢迎的建模语言和建模方法; 将MBSE方法与本体进行结合是规范MBSE模型表达的重要手段, 将MBSE与信息物理系统、数字孪生、并行工程领域进行融合研究是MBSE的重要发展方向。所提研究为使用WordCloud文本分析技术来探索当前的MBSE研究提供了技术路线参考, 有助于对MBSE的未来发展态势进行预测。
中图分类号:
董梦如, 王国新, 鲁金直, 马君达, 阎艳. 基于WordCloud技术的MBSE发展态势研究[J]. 系统工程与电子技术, 2024, 46(2): 534-548.
Mengru DONG, Guoxin WANG, Jinzhi LU, Junda MA, Yan YAN. Research on the development trend of MBSE based on WordCloud technology[J]. Systems Engineering and Electronics, 2024, 46(2): 534-548.
表2
《IEEE Transactions》会刊分类与对应的MBSE文献数量"
| 会刊名称 | 文献数量 |
| 《IEEE Transactions on Antennas and Propagation》 | 1 |
| 《IEEE Transactions on Automation Science and Engineering》 | 2 |
| 《IEEE Transactions on Computational Social Systems》 | 1 |
| 《IEEE Transactions on Computers》 | 1 |
| 《IEEE Transactions on Education》 | 2 |
| 《IEEE Transactions on Engineering Management》 | 10 |
| 《IEEE Transactions on Industrial Informatics》 | 3 |
| 《IEEE Transactions on Intelligent Transportation Systems》 | 1 |
| 《IEEE Transactions on Network Science and Engineering》 | 1 |
| 《IEEE Transactions on Plasma Science》 | 3 |
| 《IEEE Transactions on Professional Communication》 | 1 |
| 《IEEE Transactions on Reliability》 | 2 |
| 《IEEE Transactions on Software Engineering》 | 4 |
| 《IEEE Transactions on Systems, Man, and Cybernetics: Systems》 | 7 |
| 《IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)》 | 2 |
| 《IEEE Transactions on Transportation Electrification》 | 1 |
| 《IEEE Transactions on Vehicular Technology》 | 1 |
| 《IEEE Transactions on Visualization and Computer Graphics》 | 1 |
表5
关键词词频"
| 单词 | 频次 |
| model-based | 113 |
| design | 44 |
| SysML | 23 |
| architecture | 22 |
| process | 22 |
| management | 20 |
| requirement | 18 |
| UML | 16 |
| software | 16 |
| SoS | 15 |
| simulation | 14 |
| analytical models | 13 |
| complex | 12 |
| tools | 9 |
| ontology | 9 |
| verification | 8 |
| validation | 8 |
| security | 8 |
| integration | 8 |
| object-oriented | 8 |
| safety | 7 |
| knowledge | 7 |
| OPM | 6 |
| digital | 6 |
| methodology | 6 |
表7
对MBSE分析没有实际意义的词汇(摘要研究)"
| 单词 | 频次 | 单词 | 频次 | 单词 | 频次 | 单词 | 频次 | 单词 | 频次 | ||||
| the | 2 039 | article | 53 | across | 27 | over | 17 | reduce | 14 | ||||
| and | 1 249 | was | 51 | there | 27 | proposes | 17 | called | 14 | ||||
| of | 1 197 | s | 51 | program | 27 | focus | 17 | introduced | 14 | ||||
| to | 945 | have | 51 | both | 27 | making | 17 | identified | 14 | ||||
| a | 799 | use | 50 | within | 27 | objective | 17 | increasingly | 14 | ||||
| in | 598 | through | 49 | problem | 27 | large | 17 | assess | 14 | ||||
| system | 440 | their | 49 | then | 26 | adoption | 17 | must | 13 | ||||
| is | 388 | support | 46 | but | 26 | 1 | 17 | adopted | 13 | ||||
| systems | 361 | also | 46 | them | 25 | i | 17 | against | 13 | ||||
| for | 360 | results | 45 | many | 25 | solution | 16 | chain | 13 | ||||
| this | 323 | were | 44 | developed | 25 | changes | 16 | should | 13 | ||||
| that | 239 | each | 42 | demonstrate | 25 | enables | 16 | applications | 13 | ||||
| as | 225 | into | 42 | improve | 24 | several | 16 | gaps | 13 | ||||
| are | 225 | not | 41 | propose | 24 | review | 16 | 3 | 13 | ||||
| with | 212 | approaches | 41 | literature | 24 | enable | 16 | same | 13 | ||||
| an | 204 | benefits | 39 | define | 24 | developing | 16 | provided | 13 | ||||
| engineering | 203 | two | 38 | present | 24 | found | 16 | fundamental | 13 | ||||
| MBSE | 195 | presents | 36 | may | 23 | number | 16 | help | 13 | ||||
| on | 184 | work | 35 | first | 23 | community | 16 | base | 13 | ||||
| based | 175 | project | 35 | high | 23 | requires | 16 | traditional | 13 | ||||
| by | 174 | however | 34 | key | 23 | control | 16 | common | 13 | ||||
| we | 160 | well | 34 | example | 22 | including | 16 | recent | 13 | ||||
| approach | 148 | current | 33 | they | 22 | practitioners | 16 | up | 13 | ||||
| be | 147 | product | 33 | practices | 22 | supported | 16 | associated | 13 | ||||
| from | 114 | during | 33 | finally | 22 | overall | 16 | defined | 13 | ||||
| can | 110 | practice | 33 | effort | 22 | will | 16 | configurations | 13 | ||||
| paper | 109 | our | 33 | theory | 22 | therefore | 15 | relevant | 13 | ||||
| research | 105 | human | 32 | implementation | 21 | network | 15 | necessary | 13 | ||||
| analysis | 99 | when | 32 | way | 21 | increasing | 15 | implemented | 12 | ||||
| used | 96 | critical | 32 | provides | 21 | designers | 15 | given | 12 | ||||
| which | 91 | most | 32 | activities | 21 | specifically | 15 | selected | 12 | ||||
| using | 85 | application | 32 | better | 20 | being | 15 | make | 12 | ||||
| case | 80 | order | 31 | technology | 20 | real | 15 | useful | 12 | ||||
| has | 77 | applied | 31 | existing | 20 | aspects | 15 | than | 12 | ||||
| SE | 77 | challenges | 31 | behavior | 19 | further | 15 | any | 12 | ||||
| these | 72 | set | 31 | three | 19 | describes | 15 | characteristics | 12 | ||||
| study | 70 | engineers | 31 | address | 19 | some | 15 | those | 12 | ||||
| between | 69 | other | 31 | only | 19 | include | 15 | goal | 12 | ||||
| how | 68 | one | 30 | important | 19 | planning | 15 | defense | 12 | ||||
| proposed | 68 | future | 30 | conducted | 19 | ability | 15 | nfrs | 12 | ||||
| such | 68 | early | 30 | thus | 19 | capabilities | 15 | out | 12 | ||||
| at | 62 | presented | 30 | about | 19 | types | 14 | facilitate | 12 | ||||
| new | 61 | concepts | 29 | centric | 18 | best | 14 | means | 12 | ||||
| it | 61 | techniques | 29 | change | 18 | properties | 14 | attributes | 12 | ||||
| or | 57 | show | 29 | 2 | 18 | often | 14 | survey | 12 | ||||
| method | 57 | while | 29 | among | 18 | performed | 14 | difficult | 12 | ||||
| been | 56 | concept | 28 | required | 18 | designed | 14 | demonstrates | 12 | ||||
| different | 56 | studies | 28 | trade | 18 | still | 14 | although | 12 | ||||
| more | 55 | all | 28 | projects | 18 | e | 14 | analyses | 12 | ||||
| its | 55 | provide | 27 | related | 18 | experience | 14 | - | - |
表8
合并语义相似的单词(摘要研究)"
| 合并前 | 合并后 | 合并前 | 合并后 | |
| design, designs | design | needs, need | need | |
| model, models, modeling | model | industry, industrial | industry | |
| development, develop | development | stakeholders, stakeholder | stakeholder | |
| process, processes | process | assessment, assess | assessment | |
| architecture, architectures, architectural, architects | architecture | effective, effectively, effectiveness | effective | |
| requirements, requirements | requirement | cost, costs | cost | |
| methodology, methodologies, methods | methodology | patterns, pattern | pattern | |
| complex complexity | complex | evaluation, evaluate | evaluation | |
| level, levels | level | scenarios, scenario | scenario | |
| integration, integrated, integrating | integration | standards, standard | standard | |
| language, languages | language | efficient, efficiency | efficiency | |
| tools, tool | tool | stage, stages | stage | |
| domain, domains | domain | operation, operations | operation | |
| decision, decisions | decision | - | - |
表9
摘要前100单词及其频次"
| 单词 | 频次 | 单词 | 频次 | 单词 | 频次 | 单词 | 频次 | |||
| model | 504 | lifecycle | 41 | functional | 27 | infrastructure | 18 | |||
| design | 308 | management | 40 | potential | 26 | thinking | 18 | |||
| development | 167 | knowledge | 40 | metrics | 25 | communication | 18 | |||
| methodology | 145 | components | 39 | phase | 25 | generation | 18 | |||
| architecture | 140 | verification | 39 | digital | 25 | constraints | 18 | |||
| process | 139 | specific | 38 | validation | 25 | document | 17 | |||
| complex | 132 | industry | 37 | environment | 24 | CPS | 17 | |||
| requirement | 116 | safety | 35 | context | 24 | traceability | 17 | |||
| framework | 84 | assessment | 34 | state | 24 | utility | 17 | |||
| integration | 76 | definition | 34 | value | 24 | function | 17 | |||
| SysML | 73 | quality | 34 | operation | 23 | enterprise | 16 | |||
| tool | 69 | efficiency | 33 | multiple | 23 | mission | 16 | |||
| level | 68 | stakeholder | 33 | test | 23 | capability | 16 | |||
| language | 67 | pattern | 33 | structure | 23 | heterogeneous | 16 | |||
| simulation | 67 | software | 33 | identify | 21 | interoperability | 16 | |||
| effective | 51 | scenario | 30 | physical | 21 | metamodels | 15 | |||
| cost | 51 | evaluation | 30 | failure | 20 | optimization | 15 | |||
| performance | 50 | stage | 29 | reliability | 20 | dynamic | 14 | |||
| information | 50 | standard | 29 | field | 20 | relationships | 14 | |||
| SoS | 49 | specification | 29 | technical | 20 | MDD | 14 | |||
| domain | 44 | various | 29 | uncertainty | 19 | object | 14 | |||
| decision | 43 | formal | 29 | OPM | 19 | ontology | 14 | |||
| need | 42 | time | 28 | space | 19 | automated | 14 | |||
| conceptual | 41 | elements | 28 | transformation | 19 | quantitative | 13 | |||
| data | 41 | operational | 28 | service | 18 | SBD | 13 |
| 1 | 丁健. 多目标监控的大型无人机综合测控站系统设计[D]. 成都: 电子科技大学, 2018. |
| DING J, Design of large integrated UAV ground control station for multi-target surveillance[D]. Chengdu: University of Electronic Science and Technology of China, 2018. | |
| 2 | 朱静, 杨晖, 高亚辉, 等. 基于模型的系统工程概述[J]. 航空发动机, 2016, 42 (4): 12- 16. |
| ZHU J , YANG H , GAO Y H , et al. Summary of model based system engineering[J]. Aeroengine, 2016, 42 (4): 12- 16. | |
| 3 |
BJORKMAN E A , SARKANI S , MAZZUCHI T A . Using model-based systems engineering as a framework for improving test and evaluation activities[J]. Systems Engineering, 2013, 16 (3): 346- 362.
doi: 10.1002/sys.21241 |
| 4 | LOPEZ V, AKUNDI A. A conceptual model-based systems engineering (MBSE) approach to develop digital twins[C]//Proc. of the IEEE International Systems Conference, 2022. DOI: 10.1109/SysCon53536.2022.9773869. |
| 5 |
LAUKOTKA F , HANNA M , KRAUSE D . Digital twins of product families in aviation based on an MBSE-assisted approach[J]. Procedia CIRP, 2021, 100, 684- 689.
doi: 10.1016/j.procir.2021.05.144 |
| 6 | MADNI A M, PUROHIT S. Augmenting MBSE with digital twin technology: implementation, analysis, preliminary results, and findings[C]//Proc. of the IEEE International Conference on Systems, Man, and Cybernetics, 2021: 2340-2346. |
| 7 | MADNI A M, ERWIN D, MADNI C C. Digital twin-enabled MBSE testbed for prototyping and evaluating aerospace systems: lessons learned[C]//Proc. of the IEEE Aerospace Conference, 2021. DOI: 10.1109/AERO50100.2021.9438439. |
| 8 |
BICKFORD J , VAN-BOSSUYT D L , BEERY P , et al. Operationalizing digital twins through model-based systems engineering methods[J]. Systems Engineering, 2020, 23 (6): 724- 750.
doi: 10.1002/sys.21559 |
| 9 | 刘荣荣, 杨敏, 田伟, 等. 数字化协同研制体系在固体动力系统领域的研究及应用[J]. 航天工业管理, 2021, (7): 13- 18. |
| LIU R R , YANG M , TIAN W , et al. Research and application of digital cooperative development system in the field of solid power system[J]. Aerospace Industry Management, 2021, (7): 13- 18. | |
| 10 | BHADA S V , KRISHNAN R . A model centric framework and approach for complex systems policy[J]. IEEE Systems Journal, 2020, 15 (1): 215- 225. |
| 11 | DUNCAN K R , ETIENNE-CUMMINGS R . A model-based systems engineering approach to trade space exploration of implanted wireless biotelemetry communication systems[J]. IEEE Systems Journal, 2018, 13 (2): 1669- 1677. |
| 12 |
TARAILA W , ASUNDI S . Model-based systems engineering for a small-lift launch facility[J]. Systems Engineering, 2022, 25 (6): 537- 550.
doi: 10.1002/sys.21634 |
| 13 |
CALL D R , HERBER D R . Applicability of the diffusion of innovation theory to accelerate model-based systems engineering adoption[J]. Systems Engineering, 2022, 25 (6): 574- 583.
doi: 10.1002/sys.21638 |
| 14 | KHARRAT K , PENAS O , PLTEAUXR , et al. Integration of electromagnetic constraints as of the conceptual design through an MBSE approach[J]. IEEE Systems Journal, 2020, 15 (1): 747- 758. |
| 15 | GREGORY J , BERTHOUD L , TRYFONAS T , et al. Investigating the flexibility of the MBSE approach to the biomass mi-ssion[J]. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2020, 51 (11): 6946- 6961. |
| 16 |
CUI Z Y , LUO M Q , ZHANG C , et al. MBSE for civil aircraft scaled demonstrator requirement analysis and architecting[J]. IEEE Access, 2022, 10, 43112- 43128.
doi: 10.1109/ACCESS.2022.3168837 |
| 17 |
YOUNSE P J , CAMERON J E , BRADLEY T H . Comparative analysis of model-based and traditional systems engineering appro-aches for architecting a robotic space system through automatic information transfer[J]. IEEE Access, 2021, 9, 107476- 107492.
doi: 10.1109/ACCESS.2021.3096468 |
| 18 |
ANYANHUN A I , AMANOR D N , EDMONSON W W . Architecting an MBSE black-box system model for the physical layer of a visible light intersatellite communication system[J]. IEEE Journal on Miniaturization for Air and Space Systems, 2021, 2 (4): 168- 178.
doi: 10.1109/JMASS.2021.3069826 |
| 19 | WEI J F, GAO G H, DING T, et al. An improved method to requirement analysis of automated cuttings equipment based on MBSE[C]//Proc. of SPIE-The International Society for Optical Engineering, 2022, 12261: 829-834. |
| 20 |
ALBERS A , BURSAC N , SCHERER H , et al. Model-based systems engineering in modular design[J]. Design Science, 2019, 5, e17.
doi: 10.1017/dsj.2019.15 |
| 21 |
LISCOUET-HANKE S , JAHANARA H , BAUDUIN J L . A model-based systems engineering approach for the efficient specification of test rig architectures for flight control compu-ters[J]. IEEE Systems Journal, 2020, 14 (4): 5441- 5450.
doi: 10.1109/JSYST.2020.2970545 |
| 22 |
LU J Z , WEN Y J , LIU Q , et al. MBSE applicability analysis in Chinese industry[J]. INCOSE International Symposium, 2018, 28 (1): 1037- 1051.
doi: 10.1002/j.2334-5837.2018.00532.x |
| 23 | JENKINS Z I . A project-oriented model-based systems engineering (MBSE) approach for naval decision support[J]. Defense AR Journal, 2021, 28 (4): 486- 487. |
| 24 | LU J Z , MA J , ZHENG X , et al. Design ontology supporting model-based systems engineering formalisms[J]. IEEE Systems Journal, 2021, 16 (4): 5465- 5476. |
| 25 |
EVIN E , ULUDAG Y . Bioanalytical device design with model-based systems engineering tools[J]. IEEE Systems Journal, 2020, 14 (3): 3139- 3149.
doi: 10.1109/JSYST.2020.2993377 |
| 26 |
DICKERSON C E , ROSMIRA R , JI S . A formal transformation method for automated fault tree generation from a UML activity model[J]. IEEE Trans. on Reliability, 2018, 67 (3): 1219- 1236.
doi: 10.1109/TR.2018.2849013 |
| 27 | WANG F , YANG Z B , HUANG Z Q , et al. An approach to generate the traceability between restricted natural language requirements and AADL models[J]. IEEE Trans. on Reliability, 2019, 69 (1): 154- 173. |
| 28 |
GILLESPIE A , HAILES S . Assignment of legal responsibilities for decisions by autonomous cars using system architectures[J]. IEEE Trans. on Technology and Society, 2020, 1 (3): 148- 160.
doi: 10.1109/TTS.2020.3014395 |
| 29 | 王芳, 叶玲, 彭彪. 基于MBSE的体系设计与仿真验证平台[J]. 自动化与信息工程, 2022, 43 (5): 23- 29. |
| WANG F , YE L , PENG B . Architectural design and simulation verification platform based on MBSE[J]. Automation & Information Engineering, 2022, 43 (5): 23- 29. | |
| 30 | 董晓明, 韩研, 王质松, 等. 基于MBSE的装备作战概念模型化设计[J]. 中国舰船研究, 2022, 17 (5): 314- 322. |
| DONG X M , HAN Y , WANG Z S , et al. Modeling design of military equipment operational concepts by MBSE[J]. Chinese Journal of Ship Research, 2022, 17 (5): 314- 322. | |
| 31 | HU Z C, LU J Z, CHEN J W, et al. A complexity analysis approach for model-based system engineering[C]//Proc. of the IEEE 15th International Conference of System of Systems Engineering, 2020: 501-506. |
| 32 | LU J, CHEN D J, WANG J, et al. Towards a service-oriented framework for MBSE tool-chain development[C]//Proc. of the 13th Annual Conference on System of Systems Engineering, 2018: 568-575. |
| 33 | LI Z H, LU J Z, WANG G X, et al. A bibliometric analysis on model-based systems engineering[C]//Proc. of the IEEE International Symposium on Systems Engineering, 2021. DOI: 10.1109/ISSE51541.2021.9582526. |
| 34 |
AKUNDI A , MONDRAGON O . Model based systems engineering—a text mining based structured comprehensive overview[J]. Systems Engineering, 2022, 25 (1): 51- 67.
doi: 10.1002/sys.21601 |
| 35 |
武帅, 刘锡峰, 张苗, 等. 基于时间序列及K-Means聚类的学生就业形式分析[J]. 信息技术与信息化, 2021, (1): 5- 10.
doi: 10.3969/j.issn.1672-9528.2021.01.001 |
|
WU S , LIU X F , ZHANG M , et al. Analysis of student employment forms based on time series and K-Means custering[J]. Information Technology and Informatization, 2021, (1): 5- 10.
doi: 10.3969/j.issn.1672-9528.2021.01.001 |
|
| 36 | 冯与诘. 词云生成系统的构建[J]. 通讯世界, 2019, 26 (3): 190- 192. |
| FENG Y J . Construction of word cloud generation system[J]. Telecom World, 2019, 26 (3): 190- 192. | |
| 37 | ABAZI B L, KADRIU A, APOSTOLOVA M. WordCloud ana- lytics of the computer science research publications' titles over the past half century[C]//Proc. of the 43rd International Convention on Information, Communication and Electronic Technology, 2020: 887-892. |
| 38 | JO Y J, KIM E G, SHIN Y J. Graphical keyword service for research papers with text-mining method[C]//Proc. of the International Conference on Compute and Data Analysis, 2017: 185-190. |
| 39 | 张若琪, 王涵, 闫凌云, 等. 基于Python的词云生成研究[J]. 信息与电脑, 2021, (5): 201- 203. |
| ZHANG R Q , WANG H , YAN L Y , et al. Research on word cloud generation based on Python[J]. China Computer & Communication, 2021, (5): 201- 203. | |
| 40 | 姜华林. 基于PyQt5界面的词云制作软件设计[J]. 电脑知识与技术, 2021, 17 (13): 74- 76. |
| JIANG H L . Design of wordcloud production software based on PyQt5 interface[J]. Computer Knowledge and Technology, 2021, 17 (13): 74- 76. | |
| 41 | 汪言. 基于Python的词云生成及优化研究——以"十四五"规划为例[J]. 电脑知识与技术, 2021, 17 (19): 23- 28. |
| WANG Y . Research on generation and optimization of word cloud based on Python—take the text of the 14th Five-year Plan as an example[J]. Computer Knowledge and Technology, 2021, 17 (19): 23- 28. | |
| 42 | 唐婷. 基于Python的词云生成技术分析[J]. 科学技术创新, 2021, (23): 77- 78. |
| TANG T . Analysis of word cloud generation technology based on Python[J]. Scientific and Technological Innovation, 2021, (23): 77- 78. | |
| 43 | 郝爽, 李国良, 冯建华, 等. 结构化数据清洗技术综述[J]. 清华大学学报(自然科学版), 2018, 58 (12): 1037- 1050. |
| HAO S , LI G L , FENG J H , et al. Survey of structured data cleaning methods[J]. Journal of Tsinghua University (Science and Technology), 2018, 58 (12): 1037- 1050. | |
| 44 | 徐博龙. 应用Jieba和WordCloud库的词云设计与优化[J]. 福建电脑, 2019, 35 (6): 25- 28. |
| XU B L . WordCloud design based on Jieba library and WordCloud library[J]. Journal of Fujian Computer, 2019, 35 (6): 25- 28. | |
| 45 |
MADNI A M , SIEVERS M . Model-based systems engineering: motivation, current status, and research opportunities[J]. Systems Engineering, 2018, 21 (3): 172- 190.
doi: 10.1002/sys.21438 |
| 46 | DOV D . Handbook of conceptual modeling: theory, practice, and research challenges[M]. Berlin, Heidelberg: Springer, 2011: 209- 258. |
| 47 | LI Z H , WANG G X , LU J Z , et al. Bibliometric analysis of mo-del-based systems engineering: past, current, and future[J]. IEEE Trans. on Engineering Management, 2022, 71, 2475- 2492. |
| 48 | 陈红涛, 邓昱晨, 袁建华, 等. 基于模型的系统工程的基本原理[J]. 中国航天, 2016, (3): 18- 23. |
| CHEN H T , DENG Y C , YUAN J H , et al. Basic principles of model-based system engineering[J]. Aerospace China, 2016, (3): 18- 23. | |
| 49 | AKUNDI A, ANKOBIAH W, MONDRAGON O, et al. Perceptions and the extent of model-based systems engineering (MBSE) use-an industry survey[C]//Proc. of the IEEE International Systems Conference, 2022. DOI: 10.1109/SysCon53536.2022.9773894. |
| 50 | Wikipedia. System of systems[EB/OL]. [2022-08-15]. https://en.wikipedia.org/wiki/System_of_systems. |
| 51 | 刘影梅, 李亚雯, 张连怡, 等. 基于模型的体系设计与仿真方法研究[C]//第三十三届中国仿真大会论文集, 2021: 649-658. |
| LIU Y M, LI Y W, ZHANG L Y, et al. Research on system of systems design and simulation method based on model[C]//Proc. of the 33rd China Simulation Conference, 2021: 649-658. | |
| 52 | 王维平, 朱一凡, 王涛, 等. 体系视野下的MBSE[J]. 科技导报, 2019, 37 (7): 12- 21. |
| WANG W P , ZHU Y F , WANG T , et al. MBSE from a system of systems point of view[J]. Science & Technology Review, 2019, 37 (7): 12- 21. | |
| 53 | BAEK Y M, MIHRET Z, SHIN Y J, et al. A modeling method for model-based analysis and design of a system-of-systems[C]//Proc. of the 27th Asia-Pacific Software Engineering Conference, 2020: 336-345. |
| 54 | DI MAIO M, KAPOS G D, KLUSMANN N. Challenges in the modelling of SoS design alternatives with MBSE[C]//Proc. of the 11th System of Systems Engineering Conference, 2016. DOI: 10.1109/SYSOSE.2016.7542937. |
| 55 | 李文屏, 白鹤峰, 赵毅, 等. 基于MBSE的卫星通信系统建模与仿真[J]. 天地一体化信息网络, 2021, 2 (1): 69- 74. |
| LI W P , BAI H F , ZHAO Y , et al. Modeling and simulation of satellite communication system base on MBSE[J]. Space-Integrated-Ground Information Networks, 2021, 2 (1): 69- 74. | |
| 56 | 金长林, 郝继山, 罗海坤. 系统工程方法论在微系统设计中的应用探索[J]. 电子工艺技术, 2015, 36 (4): 199- 202. |
| JIN C L , HAO J S , LUO H K . Exploration of system engineering methodology in micro-system design[J]. Electronics Process Technology, 2015, 36 (4): 199- 202. | |
| 57 | KATSUMI M , GYINGER M . Choosing ontologies for reuse[J]. Applied Ontology, 2017, 12 (3/4): 195- 221. |
| 58 | HUANG Z, HANSEN R, HUANG Z F. Toward FMEA and MBSE integration[C]//Proc. of the Annual Reliability and Maintainability Symposium, 2018. DOI: 10.1109/RAM.2018.8463084. |
| 59 | 陈红涛. 从面向对象视角认识基于模型的系统工程[J]. 科技导报, 2019, 37 (7): 36- 43. |
| CHEN H T . Understanding model-based systems engineering from an object-oriented point of view[J]. Science & Technology Review, 2019, 37 (7): 36- 43. | |
| 60 | 李娇, 隆金波, 彭文胜, 等. MBSE模式下可靠性安全性测试性一体化建模与评估技术方法[J]. 计算机测量与控制, 2021, 29 (7): 247- 253. |
| LI J , LONG J B , PENG W S , et al. Integration of modeling and evaluation techniques of reliability, safety, testability in MBSE mode[J]. Computer Measurement & Control, 2021, 29 (7): 247- 253. | |
| 61 | 胡晓义, 王如平, 王鑫, 等. 基于模型的复杂系统安全性和可靠性分析技术发展综述[J]. 航空学报, 2020, 41 (6): 147- 158. |
| HU X Y , WANG R P , WANG X , et al. Recent development of safety and reliability analysis technology for model-based complex system[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (6): 147- 158. | |
| 62 | AHLBRECHT A, BERTRAM O. Evaluating system architecture safety in early phases of development with MBSE and STPA[C]//Proc. of the IEEE International Symposium on Systems Engineering, 2021. DOI: 10.1109/ISSE51541.2021.9582542. |
| 63 | AHLBRECHT A, DURAK U. Integrating safety into MBSE processes with formal methods[C]//Proc. of the IEEE/AIAA 40th Digital Avionics Systems Conference, 2021. DOI: 10.1109/DASC52595.2021.9594315. |
| 64 | BORKY J M , BRADLEY T H . Effective model-based systems engineering[M]. Switzerland: Springer, 2019. |
| 65 |
RIEDEL R , JACOBS G , KONRAD C , et al. Managing knowledge and parameter dependencies with MBSE in textile product development processes[J]. Procedia CIRP, 2020, 91, 170- 175.
doi: 10.1016/j.procir.2020.01.138 |
| 66 | 李晓红, 常家辉, 徐可. MBSE深化应用加速武器系统研制数字化转型[J]. 国防科技, 2022, 43 (4): 59- 64. |
| LI X H , CHANG J H , XU K . Deepening the application of model-based systems engineering to accelerate the digital transformation of the research and development of weapon systems[J]. National Defense Technology, 2022, 43 (4): 59- 64. | |
| 67 | SUNDARAM V, BROWNLOW L. MBSE based digital thread and digital system model for AF DCGS[C]//Proc. of the AIAA Aerospace Sciences Meeting, 2018: 1217. |
| 68 | 赵俊钦, 李艳军. 基于MBSE的民机推力管理架构设计与仿真方法[J]. 航空计算技术, 2021, 51 (5): 105- 108. |
| ZHAO J Q , LI Y J . Design and simulation method of thrust management architecture for civil aircraft based on MBSE[J]. Aeronautical Computing Technique, 2021, 51 (5): 105- 108. | |
| 69 | 李德林, 毕文豪, 张安, 等. 基于MBSE的民机研制过程管理[J]. 系统工程与电子技术, 2021, 43 (8): 2209- 2220. |
| LI D L , BI W H , ZHANG A , et al. MBSE-based process mana- gement in the development of civil aircraft[J]. Systems Engineering and Electronics, 2021, 43 (8): 2209- 2220. | |
| 70 | CIAMPA P D, NAGEL B. Accelerating the development of complex systems in aeronautics via MBSE and MDAO: a roadmap to agility[C]//Proc. of the AIAA Aviation and Aeronautics Forum and Exposition, 2021: 3056. |
| 71 | CHONG J Y, ZHOU H C, WANG M, et al. A design framework for complex spacecraft systems with integrated reliability using MBSE methodology[C]//Proc. of the 8th International Conference on Signal and Information Processing, Networking and Computers, 2022: 165-173. |
| 72 | BOGGERO L, CIAMPA P D, NAGEL B. The application of the AGILE 4.0 MBSE architectural framework for the modeling of system stakeholders, needs and requirements[C]//Proc. of the 32nd Congress of the Internation Council of the Aeronautical Sciences, 2021. DOI: 10.5281/zenodo.5735416. |
| 73 | 鲁金直, 王国新, 郑新华, 等. 基于模型系统工程中国应用调查[J]. 科技导报, 2018, 36 (20): 57- 66. |
| LU J Z , WANG G X , ZHENG X H , et al. Model-based systems engineering application investigation in China[J]. Science & Technology Review, 2018, 36 (20): 57- 66. | |
| 74 |
SHAKED A , REICH Y . Using domain-specific models to faci-litate model-based systems-engineering: development process design modeling with OPM and PROVE[J]. Applied Sciences (Switzerland), 2021, 11 (4): 1532.
doi: 10.3390/app11041532 |
| 75 | BOGGERO L, CIAMPA P D, NAGEL B. An MBSE architectural framework for the agile definition of system stakeholders, needs and requirements[C]//Proc. of the AIAA Aviation Forum, 2021. |
| 76 |
SIRIN G , PAREDIS C , YANNOU B , et al. A model identity card to support simulation model development process in a collaborative multidisciplinary design environment[J]. IEEE Systems Journal, 2015, 9 (4): 1151- 1162.
doi: 10.1109/JSYST.2014.2371541 |
| 77 | SHALLCROSS N J , PARNELL G S , POHL E A . Informing program management decisions using quantitative set-based Design[J]. IEEE Trans. on Engineering Management, 2021, 70 (9): 3213- 3228. |
| 78 |
KANNAN H . Formal reasoning of knowledge in systems engineering through epistemic modal logic[J]. Systems Engineering, 2021, 24 (1): 3- 16.
doi: 10.1002/sys.21563 |
| 79 |
张鹏翼, 黄百乔, 鞠鸿彬. MBSE: 系统工程的发展方向[J]. 科技导报, 2020, 38 (21): 21- 26.
doi: 10.3981/j.issn.1000-7857.2020.21.002 |
|
ZHANG P Y , HUANG B Q , JU H B . MBSE: future direction of system engineering[J]. Science & Technology Review, 2020, 38 (21): 21- 26.
doi: 10.3981/j.issn.1000-7857.2020.21.002 |
|
| 80 |
PALMA G , MESMER B , GUERIN A , et al. Identifying multidisciplinary metrics to analyze NASA case studies[J]. IEEE Trans. on Professional Communication, 2021, 64 (2): 170- 184.
doi: 10.1109/TPC.2021.3064394 |
| 81 |
KAPOS G D , TSADIMAS A , KOTRONIS C , et al. A decla-rative approach for transforming SysML models to executable simulation models[J]. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2021, 51 (6): 3330- 3345.
doi: 10.1109/TSMC.2019.2922153 |
| 82 | SHANGGUAN L , GOPALSWAMY S . Health monitoring for cyber physical systems[J]. IEEE Systems Journal, 2019, 14 (1): 1457- 1467. |
| 83 |
SCHLUSE M , PRIGGEMEYER M , ATORF L , et al. Experimentable digital twins—streamlining simulation-based systems engineering for industry 4.0[J]. IEEE Trans. on Industrial Informatics, 2018, 14 (4): 1722- 1731.
doi: 10.1109/TII.2018.2804917 |
| 84 | LI X , SHEN Y F , CHENG H L , et al. Identifying the development trends and technological competition situations for digital twin: a bibliometric overview and patent landscape analysis[J]. IEEE Trans. on Engineering Management, 2022, 71, 1998- 2021. |
| 85 |
MADNI A M , MADNI C C , LUCEO S D . Leveraging digital twin technology in model-based systems engineering[J]. Systems, 2019, 7 (1): 7.
doi: 10.3390/systems7010007 |
| 86 |
SHALLCROSS N , PARNELL G S , POHL E , et al. Set-based design: the state-of-practice and research opportunities[J]. Systems Engineering, 2020, 23 (5): 557- 578.
doi: 10.1002/sys.21549 |
| 87 | 关锋, 葛平, 周国栋, 等. MBSE发展趋势与中国探月工程并行协同论证[J]. 空间科学学报, 2022, 42 (2): 183- 190. |
| GUAN F , GE P , ZHOU G D , et al. Development trend of MBSE and investigation of concurrent collaborative demonstration for Chinese lunar exploration program[J]. Chinese Journal of Space Science, 2022, 42 (2): 183- 190. | |
| 88 | DONG M R, LU J Z, WANG G X, et al. Model-based systems engineering papers analysis based on word cloud visualization[C]//Proc. of the IEEE International Systems Conference, 2022. DOI: 10.1109/SysCon53536.2022.9773795. |
| [1] | 卫继承, 张娟, 杨文雅, 马岚岭, 张航. 基于DoDAF的低慢小飞行器综合处置体系架构设计[J]. 系统工程与电子技术, 2024, 46(1): 162-172. |
| [2] | 徐选华, 朱昱承. 数据驱动的大群体应急决策公众专家动态协同方法[J]. 系统工程与电子技术, 2023, 45(12): 3875-3886. |
| [3] | 曹嘉平, 欧萌歆, 李易珊, 姜江, 李际超. 岛礁防空电子对抗装备体系构建与效能评估[J]. 系统工程与电子技术, 2023, 45(9): 2784-2792. |
| [4] | 王力尧, 张进, 周洪喜, 王柯茂. 基于物理规划的多星多站访问规划[J]. 系统工程与电子技术, 2023, 45(8): 2514-2520. |
| [5] | 李兵, 刘正敏, 赵新路. 不确定环境下巡飞弹群动态资源管理[J]. 系统工程与电子技术, 2023, 45(8): 2318-2324. |
| [6] | 陈志伟, 焦健, 赵廷弟, 褚嘉运. 武器装备体系弹性技术研究综述[J]. 系统工程与电子技术, 2023, 45(7): 2069-2077. |
| [7] | 张路路, 潘正强, 刘天宇, 金光. 基于高斯过程模型的定性定量因子混合补充试验设计方法[J]. 系统工程与电子技术, 2023, 45(7): 2078-2085. |
| [8] | 徐选华, 肖婷. 社会网络行为数据驱动的大群体应急决策共识模型[J]. 系统工程与电子技术, 2023, 45(7): 2086-2097. |
| [9] | 任文娟, 杨战鹏, 许光銮, 付琨. 海上动目标身份置信度融合计算模型[J]. 系统工程与电子技术, 2023, 45(4): 1082-1089. |
| [10] | 陈子夷, 豆亚杰, 徐向前, 谭跃进, 杨克巍, 姜江. 共建共享双层策略驱动的复杂装备组合优化求解[J]. 系统工程与电子技术, 2023, 45(2): 431-443. |
| [11] | 赵斐, 李鑫, 张建. 考虑竞争失效的视情维修和备件订购联合策略优化[J]. 系统工程与电子技术, 2023, 45(1): 291-301. |
| [12] | 邱禄芸, 方志耕, 陶良彦, 陶秋澄. 网络体系效能评估改进FDNA模型[J]. 系统工程与电子技术, 2022, 44(12): 3728-3737. |
| [13] | 尹东亮, 崔国恒, 黄晓颖, 张欢. 基于改进得分函数和前景理论的区间值毕达哥拉斯模糊多属性决策[J]. 系统工程与电子技术, 2022, 44(11): 3463-3469. |
| [14] | 杨清清, 高盈盈, 郭玙, 夏博远, 杨克巍. 基于深度强化学习的海战场目标搜寻路径规划[J]. 系统工程与电子技术, 2022, 44(11): 3486-3495. |
| [15] | 王琮, 沈会良, 夏永祥, 白光晗, 方依宁. 装备保障体系关键节点分析[J]. 系统工程与电子技术, 2022, 44(10): 3134-3142. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||