| 1 | GURBUZ S Z, GURBUZ A C, MALAIA E A, et al. ASL recognition based on kinematics derived from a multi-frequency RF sensor network[C]//Proc. of the IEEE Sensors, 2020. | 
																													
																						| 2 | CHEN F Y ,  LYU H H ,  PANG Z B , et al.  Wristcam: a wearable sensor for hand trajectory gesture recognition and intelligent human-robot interaction[J]. IEEE Sensors Journal, 2019, 19 (19): 8441- 8451. doi: 10.1109/JSEN.2018.2877978
 | 
																													
																						| 3 | PLESHKOVA S G, BEKVARSKI A B, ZAHARIEV Z T. Based on artificial intelligence and deep learning hand gesture recognition for interaction with mobile robots[C]//Proc. of the 10th National Conference with International Participation, 2019. | 
																													
																						| 4 | OHN-BAR E ,  TRIVEDI M M .  Hand gesture recognition in real time for automotive interfaces: a multimodal vision-based approach and evaluations[J]. IEEE Trans.on Intelligent Transportation Systems, 2014, 15 (6): 2368- 2377. doi: 10.1109/TITS.2014.2337331
 | 
																													
																						| 5 | LEITE D A T Q, DUARTE J C, OLIVEIRA J C, et al. A system to interact with CAVE applications using hand gesture recognition from depth data[C]//Proc. of the 16th Symposium on Virtual and Augmented Reality, 2014: 246-253. | 
																													
																						| 6 | HE W F, WU K S, ZOU Y P, et al. WiG: wifi-based gesture recognition system[C]//Proc. of the 24th International Confe-rence on Computer Communication and Networks, 2015. | 
																													
																						| 7 | VENKATNARAYAN R H ,  MAHMOOD S ,  SHAHZAD M .  Wifi based multi-user gesture recognition[J]. IEEE Trans.on Mobile Computing, 2019, 20 (3): 1242- 1256. | 
																													
																						| 8 | PITTMAN C, WISNIEWSKI P, BROOKS C, et al. Multiwave: Doppler effect based gesture recognition in multiple dimensions[C]//Proc. of the Conference on Human Factors in Computing Systems Conference Extended Abstracts on Human Factors in Computing Systems, 2016: 1729-1736. | 
																													
																						| 9 | ZHOU F F, LI X Y, WANG Z H. Efficiently user-independent ultrasonic-based gesture recognition algorithm[C]//Proc. of the IEEE Sensors, 2019. | 
																													
																						| 10 | 江浩. 基于智能腕表的手写识别研究[D]. 上海: 上海交通大学, 2020. | 
																													
																						|  | JIANG H. Research on handwriting recognition based on smart watches[D]. Shanghai: Shanghai Jiao Tong University, 2020. | 
																													
																						| 11 | CHOI E S, BANG W C, CHO S J, et al. Beatbox music phone: gesture-based interactive mobile phone using a tri-axis accelerometer[C]//Proc. of the IEEE International Conference on Industrial Technology, 2005: 97-102. | 
																													
																						| 12 | PAUDYAL P, LEE J, BANERJEE A, et al. Dyfav: dynamic feature selection and voting for real-time recognition of fingerspelled alphabet using wearables[C]//Proc. of the 22nd International Conference on Intelligent User Interfaces, 2017: 457-467. | 
																													
																						| 13 | RODRIGUEZ D, PIRYATINSKA A, ZHANG X. A neural decision forest scheme with application to EMG gesture classification[C]//Proc. of the Science and Information Computing Conference, 2016: 243-252. | 
																													
																						| 14 | LI Y ,  WANG X G ,  LIU W Y , et al.  Deep attention network for joint hand gesture localization and recognition using static RGB-D images[J]. Information Sciences, 2018, 441, 66- 78. doi: 10.1016/j.ins.2018.02.024
 | 
																													
																						| 15 | 施向军, 王星尧.  基于红外传感器和隐马尔可夫模型的动态手势识别[J]. 电子器件, 2018, 41 (5): 1286- 1290. doi: 10.3969/j.issn.1005-9490.2018.05.040
 | 
																													
																						|  | SHI X J ,  WANG X R .  Dynamic gesture recognition based on infrared sensor and hidden Markov model[J]. Chinese Journal of Electron Devices, 2018, 41 (5): 1286- 1290. doi: 10.3969/j.issn.1005-9490.2018.05.040
 | 
																													
																						| 16 | FANG B Y, CO J, ZHANG M. DeepASL: enabling ubiquitous and non-intrusive word and sentence-level sign language translation[C]//Proc. of the 15th ACM Conference on Embedded Network Sensor Systems, 2017. | 
																													
																						| 17 | 赵爱芳, 裴东, 王全州, 等.  复杂环境中多信息融合的手势识别[J]. 计算机工程与应用, 2014, 50 (5): 180- 184. doi: 10.3778/j.issn.1002-8331.1304-0011
 | 
																													
																						|  | ZHAO A F ,  PEI D ,  WANG Q Z , et al.  Gesture recognition with multi-information fusion in complex environments[J]. Computer Engineering and Applications, 2014, 50 (5): 180- 184. doi: 10.3778/j.issn.1002-8331.1304-0011
 | 
																													
																						| 18 | LIU K, CHEN C, JAFARI R, et al. Multi-HMM classification for hand gesture recognition using two differing modality sensors[C]//Proc. of the IEEE Dallas Circuits and Systems Conference, 2014. | 
																													
																						| 19 | YANG Z C ,  ZHENG X B .  Hand gesture recognition based on trajectories features and computation-efficient reused LSTM network[J]. IEEE Sensors Journal, 2021, 21 (15): 16945- 16960. doi: 10.1109/JSEN.2021.3079564
 | 
																													
																						| 20 | DAIM T J, LEE R M A. The effect of body position on IR-UWB radar sensor-based hand gesture speed recognition and classification system[C]//Proc. of the IEEE International Conference on Automatic Control and Intelligent Systems, 2022: 158-162. | 
																													
																						| 21 | STADELMAVER T ,  SANTRA A ,  WEIGEL R , et al.  Radar-based gesture recognition using a variational autoencoder with deep statistical metric learning[J]. IEEE Trans.on Microwave Theory and Techniques, 2022, 70 (11): 5051- 5062. doi: 10.1109/TMTT.2022.3201265
 | 
																													
																						| 22 | CHOI J ,  PARK C ,  KIM J .  FMCW radar-based real-time hand gesture recognition system capable of out-of-distribution detection[J]. IEEE Access, 2022, 10, 87425- 87434. doi: 10.1109/ACCESS.2022.3200757
 | 
																													
																						| 23 | AHMED S ,  KIM W ,  PARK J , et al.  Radar-based air-writing gesture recognition using a novel multistream CNN approach[J]. IEEE Internet of Things Journal, 2022, 9 (23): 23869- 23880. doi: 10.1109/JIOT.2022.3189395
 | 
																													
																						| 24 | CHEN Q, LI Y W, CUI Z Y, et al. A hand gesture recognition method for mmwave radar based on angle-range joint temporal feature[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2022: 2650-2653. | 
																													
																						| 25 | WANG X R ,  LI W L ,  CHEN V C .  Hand gesture recognition using radial and transversal dual micromotion features[J]. IEEE Trans.on Aerospace and Electronic Systems, 2022, 58 (6): 5963- 5973. doi: 10.1109/TAES.2022.3179679
 | 
																													
																						| 26 | DONG L F ,  MA Z X ,  ZHU X C .  Dynamic gesture recognition network based on vehicular millimeter wave radar[J]. Transactions of Beijing Institute of Technology, 2023, 43 (5): 493- 498. | 
																													
																						| 27 | TONG P P, WENG C E, BI X, et al. Micro gesture recognition of the millimeter-wave radar based on multi-branch residual neural network[C]//Proc. of the SAE Intelligent and Connected Vehicles Symposium, 2022. | 
																													
																						| 28 | WANG Y, ZHANG J, ZHAO X C, Research on hand gesture recognition based on millimeter wave radar[C]//Proc. of the 3rd International Conference on Consumer Electronics and Computer Engineering, 2023: 205-209. | 
																													
																						| 29 | SHARMA R R ,  KUMAR K A ,  CHO S H .  Novel time-distance parameters based hand gesture recognition system using multi-UWB radars[J]. IEEE Sensors Letters, 2023, 7 (5): 6002204. | 
																													
																						| 30 | YANG Z C ,  HUANG X Z .  Cascaded regional people counting approach based on two-dimensional spatial attribute features using MIMO radar[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 3508005. | 
																													
																						| 31 | 杜鹏飞, 张祥军.  单元平均恒虚警率检测中的一个新结论[J]. 现代雷达, 2007, 29 (2): 60- 62. | 
																													
																						|  | DU P F ,  ZHANG X J .  A new conclusion in CA-CFAR detection[J]. Modern Radar, 2007, 29 (2): 60- 62. |