1 |
MORELLI E A. Determining aircraft moments of inertia from flight test data[C]//Proc. of the AIAA SciTech Forum, 2021: 11-15.
|
2 |
张家铭, 钟鸿豪, 白文艳, 等. 基于机器学习的气动参数智能修正方法[J]. 航天控制, 2021, 39 (3): 49- 51.
|
|
ZHANG J M , ZHONG H H , BAI W Y , et al. An intelligent correction method of aerodynamic parameters based on machine learning[J]. Aerospace Control, 2021, 39 (3): 49- 51.
|
3 |
浦甲伦, 韩业鹏, 张亮. 飞行器气动参数智能在线辨识技术研究[J]. 宇航总体技术, 2018, 2 (6): 1- 9.
|
|
PU J L , HAN Y P , ZHANG L . Research on intelligent online identification technology for aerodynamic parameters of aircraft[J]. Astronautical Systems Engineering Technology, 2018, 2 (6): 1- 9.
|
4 |
李正强. 基于LS-SVM飞机大迎角动态辨识方法研究[J]. 计算机仿真, 2019, (1): 28- 30.
|
|
LI Z Q . A high angle of attack dynamical system identification algorithm based on LS-SVM[J]. Computer Simulation, 2019, (1): 28- 30.
|
5 |
乔伟, 王洪伟, 郑亚飞, 等. 基于Y12F飞机适航试飞结果的参数辨识[C]//第八届中囯航空学会青年科技论坛, 2018: 630-632.
|
|
QIAO W, WANG H W, ZHENG Y F, et al. Parameter identification based on Y12F flight test results[C]//Proc. of the 8th China-China Aviation Society Youth Science and Technology Forum, 2018: 630-632.
|
6 |
姜永明, 王长青, 徐骋. 基于递推最小二乘法的飞行器模型参数在线辨识[J]. 控制与信息技术, 2019, 4 (1): 58- 64.
|
|
JIANG Y M , WANG C Q , XU C . Online identification of aircraft model parameters based on recursive least squares method[J]. Control and Information Technology, 2019, 4 (1): 58- 64.
|
7 |
苏振宇. 基于试飞数据的飞机大迎角气动力参数辨识[J]. 科学技术创新, 2018, 30 (1): 42- 43.
|
|
SU Z Y . Identification of aerodynamics parameters of high angle of attack based on test flight data[J]. Science and Technology Innovation, 2018, 30 (1): 42- 43.
|
8 |
苏振宇. 飞行器气动力参数辨识技术的发展与应用[J]. 科学技术创新, 2018, 29 (1): 64- 65.
|
|
SU Z Y . Development and application of aerodynamic parameter identification technology for aircraft[J]. Science and Technology Innovation, 2018, 29 (1): 64- 65.
|
9 |
张婉鑫, 朱纪洪. 大迎角非定常气动参数辨识研究[J]. 清华大学学报, 2017, 57 (7): 673- 679.
|
|
ZHANG W X , ZHU J H . Unsteady aerodynamic identification of aircraft at high angles of attack[J]. Tsinghua University, 2017, 57 (7): 673- 679.
|
10 |
MORELLI E A. Autonomous real-time global aerodynamic modeling in the frequency domain[C]//Proc. of the AIAA SciTech Forum, 2020: 25-30.
|
11 |
RIDDICK S E. An overview of NASA's learn to fly technology development[C]//Proc. of the AIAA SciTech Forum, 2020: 16-20.
|
12 |
WEINSTEIN R, HUBBARD J E. Global aerodynamic modeling using automated local model networks in real time[C]//Proc. of the AIAA SciTech Forum, 2020: 10-15.
|
13 |
SNYDER S. Autopilot design with learn-to Fly[C]//Proc. of the AIAA SciTech Forum, 2020: 25-29.
|
14 |
MORELLI E A. Practical aspects of real-time modeling for the learn-to-fly concept[C]//Proc. of Atmospheric Flight Mecha-nics Conference, 2018: 25-29.
|
15 |
MURPHY P C, HATKE D B, AUBUCHON V. Preliminary steps in developing rapid aero modeling technology[C]//Proc. of the AIAA SciTech Forum, 2020: 6-10.
|
16 |
MORELLI E A, GRAUER J A. Practical aspects of the frequency domain approach for aircraft system identification[C]//Proc. of the Atmospheric Flight Mechanics Conference, 2018: 37-40.
|
17 |
SCOTT C M, GONZALEZ O R. On the development of a fuzzy logic model-less aircraft controller[C]//Proc. of the AIAA SciTech Forum, 2020: 10-14.
|
18 |
MORELLI E A , GRAUER J A . Practical aspects of frequency-domain approaches for aircraft system identification[J]. Journal of Aircraft, 2020, (2): 57- 63.
|
19 |
CAO Y H , TAN W Y . The effects of icing on aircraft longitudinal aerodynamic characteristics[J]. Mathematics, 2020, 8 (7): 117.
|
20 |
DOU L Q , DU M M , ZHANG X Y , et al. Aerodynamic parameter identification of the RLV reentry process based on the EM-EKF algorithm[J]. Journal of Tianjin University, 2019, 52 (12): 1285- 1292.
|
21 |
MORELLI E A. Practical aspects of multiple-input design for aircraft system identification flight tests[C]//Proc. of the AIAA SciTech Forum, 2021.
|
22 |
JASON L, CRUES E Z. Online estimation and identification of aircraft stability derivatives using the modified gain extended Kalman filter[C]//Proc. of the AIAA SciTech Forum, 1985.
|
23 |
AMIN S M, GERART V, RODIN E Y. System identification via artificial neural networks: applications to on-line aircraft parameter estimation[C]//Proc. of the AIAA SciTech Forum, 1997.
|
24 |
WILLIAMS P S. Selected flight test results for online learning neural network-based flight control system[C]//Proc. of the 1st Intelligent Systems Technical Conference, 2004.
|
25 |
KENTON K, MAY J, VALASEK J. Aircraft system identification using artificial neural networks[C]//Proc. of the AIAA SciTech Forum, 2013.
|
26 |
DESHPANDE V, DAS N, TADIPARTHI V. On neural network training from noisy data using a novel filtering framework[C]// Proc. of the AIAA SciTech Forum, 2020.
|
27 |
BELSTEN A. Data driven flight state identification via time- series-informed features and convolutional neural network[C]// Proc. of the AIAA SciTech Forum, 2021.
|
28 |
LESHIKAR C, GOSNELL S, GOMEZ E. System identification flight testing of inverted V-tail small unmanned air system[C]// Proc. of the AIAA SciTech Forum, 2022.
|
29 |
PARSONS E K. Identification of a precision segmented reflector[C]//Proc. of the AIAA SciTech Forum, 1990.
|
30 |
BRADSHAW T B, HUBER R R. Adaptive control via flight segment identification[C]//Proc. of the AIAA SciTech Forum, 1982.
|
31 |
WANG L P , ZHANG Z , ZHU Q D . Automatic flight control design considering objective and subjective risks during carrier landing[J]. Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 2020, 234 (4): 446- 461.
|
32 |
RODRIGUEZ R A, SAMPEDRO C, BAVLE H. A deep reinforcement learning technique for vision-based autonomous multirotor landing on a moving platform[C]//Proc. of the RSJ International Conference on Intelligent Robots and Systems, 2018.
|
33 |
LEE B, SAJ V, BENEDICT M. Machine learning vision and nonlinear control approach for autonomous ship landing of vertical flight aircraft[C]//Proc. of the Vertical Flight Society Forum, 2021.
|
34 |
CHRISTOPH D . Aerodynamic modeling system identification and analysis of iced aircraft configurations[J]. Journal of Aircraft, 2018, 55 (1): 145- 161.
|