系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (6): 1218-1225.doi: 10.3969/j.issn.1001-506X.2020.06.03

• 电子技术 • 上一篇    下一篇

非凸运动辅助低秩稀疏分解目标检测算法

杨真真1,2(), 乐俊1(), 杨永鹏3(), 范露1()   

  1. 1. 南京邮电大学通信与网络技术国家工程研究中心, 江苏 南京 210023
    2. 南京邮电大学理学院, 江苏 南京 210023
    3. 南京信息职业技术学院网络与通信学院, 江苏 南京 210023
  • 收稿日期:2019-09-05 出版日期:2020-06-01 发布日期:2020-06-01
  • 作者简介:杨真真(1984-),女,副教授,博士,主要研究方向为低秩稀疏分解、多媒体信息处理。E-mail:yangzz@njupt.edu.cn|乐俊(1995-),男,硕士研究生,主要研究方向为低秩稀疏分解、多媒体信息处理。E-mail:m15270986042@163.com|杨永鹏(1984-),男,讲师,硕士,主要研究方向为低秩稀疏分解、多媒体信息处理。E-mail:yangyp@cjcit.cn|范露(1994-),女,硕士研究生,主要研究方向为低秩稀疏分解、多媒体信息处理。E-mail:1317014321@njupt.edu.cn
  • 基金资助:
    国家自然科学基金(61501251);国家自然科学基金(11671004);中国博士后科学基金(2018M632326);江苏省高校自然科学面上项目(19KJB510044);通信与网络技术国家工程研究中心开放课题(TXKY17010);江苏省高等学校大学生创新创业训练计划项目(创新类项目)(201913112012Y)

Object detection algorithm of nonconvex motion-assisted low rank and sparse decomposition

Zhenzhen YANG1,2(), Jun LE1(), Yongpeng YANG3(), Lu FAN1()   

  1. 1. National Engineering Research Center of Communications and Networking, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
    2. School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
    3. School of Network and Communication, Nanjing Vocational College of Information Technology, Nanjing 210023, China
  • Received:2019-09-05 Online:2020-06-01 Published:2020-06-01
  • Supported by:
    国家自然科学基金(61501251);国家自然科学基金(11671004);中国博士后科学基金(2018M632326);江苏省高校自然科学面上项目(19KJB510044);通信与网络技术国家工程研究中心开放课题(TXKY17010);江苏省高等学校大学生创新创业训练计划项目(创新类项目)(201913112012Y)

摘要:

针对传统低秩稀疏分解(low rank and sparse decomposition, LRSD)用于视频运动目标检测时检测精度较低的问题,提出了一种鲁棒非凸运动辅助LRSD(robust nonconvex motion-assisted LRSD, RNMALRSD)的运动目标检测算法。该算法首先考虑到视频背景的低秩特性,采用非凸γ范数对秩函数进行逼近,考虑视频背景在变换域上仍然具有稀疏性,引入背景在变换域的稀疏先验。其次,引入运动辅助信息矩阵,使其融入前景的运动信息,表示每个像素属于背景的可能性,提高视频运动目标检测的准确度。然后,采用交替方向乘子法(alternating direction method of multipliers, ADMM)对提出的模型进行求解。最后,将提出的方法应用到视频运动目标检测上进行仿真实验。对实验结果的分析表明,提出的RNMALRSD方法比其他基于LRSD的运动目标检测方法具有更高的检测精度。

关键词: 低秩稀疏分解, 运动辅助, 交替方向乘子法, 鲁棒主成分分析, 目标检测

Abstract:

Aiming at the problem of low detection accuracy when using the traditional low rank and sparse decomposition (LRSD) algorithm for video moving object detection, this paper proposes a moving object detection algorithm based on the robust nonconvex motion-assisted LRSD (RNMALRSD). Firstly, the proposed algorithm considers the low rank characteristic of the background, and utilities the nonconvex γ norm to approximate the rank function. It also considers that the background is still sparse in the transform domain, and introduces the sparse prior of the background in its transform domain. In addition, the motion-assisted information matrix is introduced into the foreground motion information to show the possibility that each pixel belongs to the background and improve the accuracy of video moving object detection. Then, the proposed model is solved by the alternating direction method of multipliers (ADMM). Finally, the proposed method is applied to moving object detection. The experimental results show that the proposed RNMALRSD method has a higher detection accuracy than other moving object detection methods based on LRSD.

Key words: low rank and sparse decomposition (LRSD), motion-assisted, alternating direction method of multipliers (ADMM), robust principal component analysis (RPCA), object detection

中图分类号: