1 |
CANDES E J, LI X D, MA Y, et al. Robust principal component analysis?[J]//Journal of the ACM, 2011, 58(3): 11: 1-11: 37.
|
2 |
MU Y D, DONG J, YUAN X T, et al. Accelerated low-rank visual recovery by random projection[C]//Proc.of the Conference on Computer Vision and Pattern Recognition, 2011: 2609-2616.
|
3 |
ZHANG H M , QIAN J J , GAO J B , et al. Scalable proximal Jacobian iteration method with global convergence analysis for nonconvex unconstrained composite optimizations[J]. IEEE Trans.on Neural Networks and Learning Systems, 2019, 30 (9): 2825- 2839.
doi: 10.1109/TNNLS.2018.2885699
|
4 |
KANG Z, PENG C, CHENG Q. Robust PCA via nonconvex rank approximation[C]//Proc.of the IEEE International Confe-rence on Data Mining, 2015: 211-220.
|
5 |
XIE W B , YIN H , WANG M N , et al. Low-rank structured sparse representation and reduced dictionary learning based abnormity detection[J]. IET Computer Vision, 2019, 13 (1): 8- 14.
doi: 10.1049/iet-cvi.2018.5256
|
6 |
FEI L K , XU Y , FANG X Z , et al. Low rank representation with adaptive distance penalty for semi-supervised subspace classification[J]. Pattern Recognition, 2017, 67, 252- 262.
doi: 10.1016/j.patcog.2017.02.017
|
7 |
WRIGHT J, GANESH A, RAO S, et al. Robust principal component analysis: exact recovery of corrupted low-rank matrices[R]. Urbana-Champaign: Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, 2009.
|
8 |
ZHANG X, WANG L X, GU Q Q. A unified framework for nonconvex low-rank plus sparse matrix recovery[C]//Proc.of the 21st International Conference on Artificial Intelligence and Statistics, 2018: 1097-1107.
|
9 |
BOUWMANS T , SOBRAL A , JAVED S , et al. Decomposition into low-rank plus additive matrices for background/foreground separation: a review for a comparative evaluation with a large-scale dataset[J]. Computer Science Review, 2017, 23, 1- 71.
doi: 10.1016/j.cosrev.2016.11.001
|
10 |
LIU X , ZHAO G Y , YAO J W , et al. Background subtraction based on low rank and structured sparse decomposition[J]. IEEE Trans.on Image Processing, 2015, 24 (8): 2502- 2514.
doi: 10.1109/TIP.2015.2419084
|
11 |
HORNG H L , JEN H C , TYNG L L . Regularized background adaptation: a novel learning rate control scheme for Gaussian mixture modeling[J]. IEEE Trans.on Image Processing, 2011, 20 (3): 822- 836.
doi: 10.1109/TIP.2010.2075938
|
12 |
BARNICH O , DROOGENBROECK M V . VIBE: a universal background subtraction algorithm for video sequences[J]. IEEE Trans.on Image Processing, 2011, 20 (6): 1709- 1724.
doi: 10.1109/TIP.2010.2101613
|
13 |
CANDES E, LI X D, MA Y, et al. Robust principal component analysis?: recovering low-rank matrices from sparse errors[C]//Proc.of the IEEE Sensor Array and Multichannel Signal Processing Workshop, 2010: 201-204.
|
14 |
ZHOU T Y, TAO D C. GoDec: randomized low-rank & sparse matrix decomposition in noisy case[C]//Proc.of the 28th International Conference on Machine Learning, 2011: 33-40.
|
15 |
ZHOU T Y, TAO D C. Bilateral random projections[C]//Proc.of the International Symposium on Information Theory, 2012: 1286-1290.
|
16 |
KANG Z, PENG C, CHENG Q. Robust PCA via nonconvex rank approximation[C]//Proc.of the IEEE International Conference on Data Mining, 2015: 211-220.
|
17 |
YANG Z Z , YANG Z , HAN D R . Alternating direction method of multipliers for sparse and low-rank decomposition based on nonconvex nonsmooth weighted nuclear norm[J]. IEEE Access, 2018, 6, 56945- 56953.
doi: 10.1109/ACCESS.2018.2872688
|
18 |
LU C Y , TANG J H , YAN S C , et al. Nonconvex nonsmooth low rank minimization via iteratively reweighted nuclear norm[J]. IEEE Trans.on Image Processing, 2016, 25 (2): 829- 839.
doi: 10.1109/TIP.2015.2511584
|
19 |
YANG L , PONG T K , CHEN X J . Alternating direction method of multipliers for a class of nonconvex and nonsmooth problems with applications to background/foreground extraction[J]. SIAM Journal on Imaging Sciences, 2017, 10 (1): 74- 110.
doi: 10.1137/15M1027528
|
20 |
CHEN W G , LI Y L . Stable recovery of low-rank matrix via nonconvex Schatten p-minimization[J]. Science China Mathematics, 2015, 58 (12): 2643- 2654.
doi: 10.1007/s11425-015-5081-6
|
21 |
XU F , HAN J Q , WANG Y L , et al. Dynamic magnetic resonance imaging via nonconvex low-rank matrix approximation[J]. IEEE Access, 2017, 5, 1958- 1966.
doi: 10.1109/ACCESS.2017.2657645
|
22 |
GUYON C, BOUWMANS T, ZAHZAH E H. Foreground detection based on low-rank and block-sparse matrix decomposition[C]//Proc.of the 19th IEEE International Conference on Image Processing, 2012: 1225-1228.
|
23 |
YE X C , YANG J Y , SUN X , et al. Foreground-background separation from video clips via motion-assisted matrix restoration[J]. IEEE Trans.on Circuits and Systems for Video Technology, 2015, 25 (11): 1721- 1734.
doi: 10.1109/TCSVT.2015.2392491
|
24 |
XUE Z C , DONG J , ZHAO Y X , et al. Low-rank and sparse matrix decomposition via the truncated nuclear norm and a sparse regularizer[J]. The Visual Computer, 2019, 35, 1549- 1566.
doi: 10.1007/s00371-018-1555-1
|
25 |
QIAN W , CAO F . Adaptive algorithms for low-rank and sparse matrix recovery with truncated nuclear norm[J]. International Journal of Machine Learning and Cybernetics, 2019, 10, 1341- 1355.
doi: 10.1007/s13042-018-0814-9
|
26 |
PORWIK P , LISOWSKA A . The Haar-wavelet transform in digital image processing: its status and achievements[J]. Machine Graphics and Vision, 2004, 13 (1/2): 79- 98.
|
27 |
TAO P D , AN L T H . Convex analysis approach to D.C.programming: theory, algorithms and applications[J]. Acta Mathematica Vietnamica, 1997, 22 (1): 287- 367.
|
28 |
LI L Y , HUANG W M , GU Y H , et al. Statistical modeling of complex backgrounds for foreground object detection[J]. IEEE Trans.on Medical Imaging, 2004, 13 (11): 1459- 1472.
|
29 |
GOYETTE N, JODOIN P M, PORIKLI F, et al. Changedetection.net: a new change detection benchmark dataset[C]//Proc.of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2012. DOI: 10.1109/CVPRW.2012.6238919.
|
30 |
BRUTZER S, HOFERLIN B, HEIDEMANN G. Evaluation of background subtraction techniques for video surveillance[C]//Proc.of the Conference on Computer Vision and Pattern Recognition, 2011: 1937-1944.
|