系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (12): 2915-2923.doi: 10.3969/j.issn.1001-506X.2020.12.30
吴子龙(), 陈红(
), 雷迎科(
), 李昕(
), 熊颢(
)
收稿日期:
2020-01-09
出版日期:
2020-12-01
发布日期:
2020-11-27
作者简介:
吴子龙(1998-),男,硕士研究生,主要研究方向为机器学习、通信信号处理。E-mail:基金资助:
Zilong WU(), Hong CHEN(
), Yingke LEI(
), Xin LI(
), Hao XIONG(
)
Received:
2020-01-09
Online:
2020-12-01
Published:
2020-11-27
摘要:
针对现有通信辐射源个体识别方法预处理过程复杂及特征提取较难的问题,提出了一种基于堆栈式长短期记忆(long short-term memory, LSTM)网络的辐射源个体识别算法。该算法直接使用IQ时间序列信号训练LSTM网络,即可实现对通信辐射源个体的高效识别,避免了复杂的信号预处理过程。为使LSTM网络能更好地适用于通信辐射源个体识别,利用3层LSTM网络提取辐射源深层特征,并通过实验优化了网络参数。然后对该算法的实际应用泛化性进行了实验探究,结果表明该算法在其他辐射源数据集上也取得了较好的效果。最后,通过实验对算法进行了验证,结果表明相比于传统算法,在样本数较多时,该算法的识别准确率可以达到98%,而且简单快速智能,便于工程化与实用化。
中图分类号:
吴子龙, 陈红, 雷迎科, 李昕, 熊颢. 基于堆栈式LSTM网络的通信辐射源个体识别[J]. 系统工程与电子技术, 2020, 42(12): 2915-2923.
Zilong WU, Hong CHEN, Yingke LEI, Xin LI, Hao XIONG. Communication emitter individual identification based on stacked LSTM network[J]. Systems Engineering and Electronics, 2020, 42(12): 2915-2923.
1 |
SHIEH C S , LIN C T . A vector neural network for emitter identification[J]. IEEE Trans.on Antennas and Propagation, 2002, 50 (8): 1120- 1127.
doi: 10.1109/TAP.2002.801387 |
2 |
PAN Y W , YANG S H , PENG H , et al. Specific emitter identification based on deep residual networks[J]. IEEE Access, 2019, 7, 54425- 54434.
doi: 10.1109/ACCESS.2019.2913759 |
3 |
WONG L J , HEADLEY W C , MICHAELS A J . Specific emitter identification using convolutional neural network-based IQ imbalance estimators[J]. IEEE Access, 2019, 7, 33544- 33555.
doi: 10.1109/ACCESS.2019.2903444 |
4 |
DING L D , WANG S L , WANG F G , et al. Specific emitter identification via convolutional neural networks[J]. IEEE Communications Letters, 2018, 22 (12): 2591- 2594.
doi: 10.1109/LCOMM.2018.2871465 |
5 |
HAN J , ZHANG T , REN D F , et al. Mechanism analysis and feature extraction algorithm of communication emitter fingerprint[J]. AEU-International Journal of Electronics and Communications, 2019, 106, 89- 95.
doi: 10.1016/j.aeue.2019.04.020 |
6 |
ZHANG J , WANG F , DOBRE O A , et al. Specific emitter identification via Hilbert-Huang transform in single-hop and relaying scenarios[J]. IEEE Trans.on Information Forensics and Security, 2016, 11 (6): 1192- 1205.
doi: 10.1109/TIFS.2016.2520908 |
7 | SATIJA U , TRIVEDI N , BISWAL G , et al. Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios[J]. IEEE Trans.on Information Forensics and Security, 2018, 14 (3): 581- 591. |
8 |
KIM L S , BAE H B , KIL R M , et al. Classification of the trained and untrained emitter types based on class probability output networks[J]. Neurocomputing, 2017, 248, 67- 75.
doi: 10.1016/j.neucom.2017.01.094 |
9 | 黄颖坤, 金炜东, 余志斌, 等. 基于深度学习和集成学习的辐射源信号识别[J]. 系统工程与电子技术, 2018, 40 (11): 2420- 2425. |
HUANG Y K , JIN W D , YU Z B , et al. Radar emitter signal recognition based on deep learning and ensemble learning[J]. Systems Engineering and Electronics, 2018, 40 (11): 2420- 2425. | |
10 |
YUAN Y J , HUANG Z T , WU H , et al. Specific emitter identification based on Hilbert-Huang transform-based-time frequency-energy distribution features[J]. IET Communications, 2014, 8 (13): 2404- 2412.
doi: 10.1049/iet-com.2013.0865 |
11 | HAN J , ZHANG T , REN D , et al. Communica-tion emitter identification based on distribution of bispectrum amplitude and phase[J]. IET Science, Measurement & Technology, 2017, 11 (8): 1104- 1112. |
12 | 周志文, 黄高明, 王雪宝, 等. 基于联合协作表示的特定辐射源识别[J]. 系统工程与电子技术, 2019, 41 (4): 724- 729. |
ZHOU Z W , HUANG G M , WANG X B , et al. Specific emitter identification based on joint cllaborative represenation[J]. Systems Engineering and Electronics, 2019, 41 (4): 724- 729. | |
13 |
ZHANG M , DIAO M , GUO L M . Convolutional neural networks for automatic cognitive radio waveform recognition[J]. IEEE Access, 2017, 5, 11074- 11082.
doi: 10.1109/ACCESS.2017.2716191 |
14 | KONG M X, ZHANG J, LIU W F, et al. Radar emitter identification based on deep convolutional neural network[C]//Proc.of the International Conference on Control, Automation and Information Sciences, 2018: 309-314. |
15 | O'SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]//Proc.of the International Conference on Engineering Applications of Neural Networks, 2016: 213-226. |
16 | WEST N E, O'SHEA T. Deep architectures for modulation recognition[C]//Proc.of the IEEE International Symposium on Dynamic Spectrum Access Networks, 2017. |
17 | MATUSZEWSKI J, SIKORSKA-LUKASIE-WICZ K. Neural network application for emitter identification[C]//Proc.of the 18th International Radar Symposium, 2017. |
18 |
MCGINTHY J M , WONG L J , MICHAELS A J . Groundwork for neural network-based specific emitter identification authentication for IoT[J]. IEEE Internet of Things Journal, 2019, 6 (4): 6429- 6440.
doi: 10.1109/JIOT.2019.2908759 |
19 |
SALEH K , HOSSNY M , NAHAVANDI S . Intent prediction of pedestrians via motion trajectories using stacked recurrent neural networks[J]. IEEE Trans.on Intelligent Vehicles, 2018, 3 (4): 414- 424.
doi: 10.1109/TIV.2018.2873901 |
20 |
BATCHULUUN G , YOON H S , KANG J K , et al. Gait-based human identification by combining shallow convolutional neural network-stacked long short-term memory and deep convolutional neural network[J]. IEEE Access, 2018, 6, 63164- 63186.
doi: 10.1109/ACCESS.2018.2876890 |
21 | HERYADI Y, WARNARS H L H S. Learning temporal representation of transaction amount for fraudulent transaction recog-nition using CNN, Stacked LSTM, and CNN-LSTM[C]//Proc.of the IEEE International Conference on Cyber-netics and Computational Intelligence, 2017: 84-89. |
22 |
YANG F F , SONG X B , WANG D , et al. Combined CNN-LSTM network for state-of-charge estimation of lithiumion batteries[J]. IEEE Access, 2019, 7, 88894- 88902.
doi: 10.1109/ACCESS.2019.2926517 |
23 |
ZHANG Y S , ZHENG J , JIANG Y R , et al. A text sentiment classification modeling method based on coordinated CNN-LSTM-attention model[J]. Chinese Journal of Electronics, 2019, 28 (1): 120- 126.
doi: 10.1049/cje.2018.11.004 |
24 |
BHUNIA A K , KONWER A , BHUNIA A K , et al. Script identification in natural scene image and video frames using an attention based convolutional-LSTM network[J]. Pattern Recog-nition, 2019, 85, 172- 184.
doi: 10.1016/j.patcog.2018.07.034 |
25 |
KIM T Y , CHO S B . Web traffic anomaly detection using C-LSTM neural networks[J]. Expert Systems with Applications, 2018, 106, 66- 76.
doi: 10.1016/j.eswa.2018.04.004 |
26 | GREFF K , SRIVASTAVA R K , KOUTNIK J , et al. LSTM: a search space odyssey[J]. IEEE Trans.on Neural Networks and Learning Systems, 2016, 28 (10): 2222- 2232. |
27 |
HOPFIELD J J . Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences, 1982, 79 (8): 2554- 2558.
doi: 10.1073/pnas.79.8.2554 |
28 |
HE J , WANG L Q , LIU L , et al. Long document classification from local word glimpses via recurrent attention learning[J]. IEEE Access, 2019, 7, 40707- 40718.
doi: 10.1109/ACCESS.2019.2907992 |
29 | HORI T, CHO J, WATANABE S. End-to-end speech recognition with word-based RNN language models[C]//Proc.of the IEEE Spoken Language Technology Workshop, 2018: 389-396. |
30 |
LU Y , ZHOU J H , DAI H N , et al. Sentiment analysis of Chinese microblog based on stacked bidirectional LSTM[J]. IEEE Access, 2019, 7, 38856- 38866.
doi: 10.1109/ACCESS.2019.2905048 |
31 | SONG X Y , LIU Y T , XUE L , et al. Time-series well performance prediction based on long short-term memory (LSTM) neural network model[J]. Journal of Petroleum Science and Engineering, 2019, 186, 106682. |
32 | 刘金利, 张培玲. 改进LeNet-5网络在图像分类中的应用[J]. 计算机工程与应用, 2019, 55 (15): 32- 37, 95. |
LIU J L , ZHANG P L . Application of LeNet-5 neural network in image classification[J]. Computer Engineering and Applications, 2019, 55 (15): 32- 37, 95. | |
33 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual lear-ning for image recognition[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
[1] | 聂倩, 杨丽花, 呼博, 任露露. 基扩展模型下基于LSTM神经网络的时变信道预测方法[J]. 系统工程与电子技术, 2022, 44(9): 2971-2977. |
[2] | 方伟, 王玉, 闫文君, 林冲. 基于神经网络的符号化飞行动作识别[J]. 系统工程与电子技术, 2022, 44(3): 737-745. |
[3] | 张心宇, 刘源, 宋佳凝. 基于LSTM神经网络的短期轨道预报[J]. 系统工程与电子技术, 2022, 44(3): 939-947. |
[4] | 蔺瑞管, 王华伟, 车畅畅, 倪晓梅, 熊明兰. 基于LSTM分类器的航空发动机预测性维护模型[J]. 系统工程与电子技术, 2022, 44(3): 1052-1059. |
[5] | 曾航, 张红梅, 任博, 崔利杰, 武江南. 基于改进LSTM模型的航空安全预测方法研究[J]. 系统工程与电子技术, 2022, 44(2): 569-576. |
[6] | 谢磊, 丁达理, 魏政磊, 汤安迪, 张鹏. AdaBoost-PSO-LSTM网络实时预测机动轨迹[J]. 系统工程与电子技术, 2021, 43(6): 1651-1658. |
[7] | 韩驰, 熊伟. 基于改进灰狼算法优化SVR的航天侦察装备效能评估[J]. 系统工程与电子技术, 2021, 43(10): 2902-2910. |
[8] | 胡晓月, 康凯, 钱骅, 张舜卿. 基于LSTM的LEO卫星链路自适应算法[J]. 系统工程与电子技术, 2021, 43(1): 237-243. |
[9] | 熊明兰, 王华伟, 徐怡, 付强. 基于鸟击事故征候预测的通用航空安全研究[J]. 系统工程与电子技术, 2020, 42(9): 2033-2040. |
[10] | 方章闻, 张金艺, 李科, 姜玉稀. 小样本条件下的通信辐射源半监督特征提取[J]. 系统工程与电子技术, 2020, 42(10): 2381-2389. |
[11] | 黄伟, 徐建城, 吴华兴, 李俊兵. 基于参数优化的导弹编队控制一致性算法[J]. 系统工程与电子技术, 2018, 40(11): 2528-. |
[12] | 杨英杰1, 于永利1, 张柳1, 张伟2. 装备维修保障仿真系统灵敏度分析与参数优化[J]. 系统工程与电子技术, 2016, 38(3): 575-581. |
[13] | 王靖程, 曹晖, 张彦斌, 任志文. 基于最小化界外密度的SVDD参数优化算法[J]. 系统工程与电子技术, 2015, 37(6): 1446-1451. |
[14] | 吴宗谕, 罗文彩, 陈勇. 基于Pareto定律参数优化的径向基近似建模[J]. 系统工程与电子技术, 2015, 37(5): 1195-1200. |
[15] | 刘忠, 赵艳辉. 具有优化结构的导弹分数阶控制器设计[J]. 系统工程与电子技术, 2014, 36(12): 2490-2495. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||