Journal of Systems Engineering and Electronics ›› 2009, Vol. 31 ›› Issue (3): 575-578.
吴一全, 吴文怡, 罗子娟
WU Yi-quan, WU Wen-yi, LUO Zi-juan
摘要: 在随机误差不服从正态分布的问题中,最小一乘估计的统计性能优于最小二乘估计;另外,最小一乘估计的稳健性更强。因此提出了基于最小一乘估计和遗传算法进行背景预测的红外弱小目标检测方法。首先,建立最小一乘准则背景预测模型,应用遗传算法求解最小一乘估计的最优值并进行背景预测;然后,由实际图像和预测图像相减得到残差图像,并采用二维指数熵图像阈值选取方法对残差图像进行分割。针对实际红外图像序列的实验结果表明:所提出的方法对弱小目标具有更高的检测概率和更好的检测结果,优于基于最小二乘背景预测的检测方法。
中图分类号: