| 1 |
杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报, 2020, 41 (6): 524377.
|
|
YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (6): 524377.
|
| 2 |
KAREEM K, NAIK N, JENKINS P, et al. Understanding the defense of operational technology(OT) systems: a comparison of Lockheed Martin’s cyber kill chain, MITRE ATT&CK framework, and diamond model[C]// Proc. of the Contributions Presented at the International Conference on Computing, Communication, Cybersecurity and AI, 2024: 605−624.
|
| 3 |
BILL G, DAN P. Beyond documents: accelerating joint advantage through direct resourcing and experimentation[R]. Washington D. C. : Hudson Institute, 2025.
|
| 4 |
MARCELLO B, FRANCESCO D P. Quick changeover design: a new lean methodology to support the design of machines in terms of rapid changeover capability[J]. Journal of Manufacturing Technology Management, 2023, 34 (9): 84- 114.
doi: 10.1108/JMTM-12-2022-0430
|
| 5 |
ACOSTA R A, MARTINEZ F H. Validation of sliding mode and passivity control in high-power quadratic buck converter through rapid prototyping[J]. IEEE Access, 2024, 12, 8668- 8699.
doi: 10.1109/ACCESS.2023.3340313
|
| 6 |
FRAIRE U. Modeling & simulation of the rapid rigging & de-rigging airdrop system (RRDAS)[EB/OL]. [2025-02-17]. https://doi.org/10.2514/6.2024-4516.
|
| 7 |
HU S, LI Y X. Design of a foldable multirotor for rapid deployment in complex environments[C]//Proc. of the 3rd International Conference on Autonomous Unmanned Systems, 2024: 237−248.
|
| 8 |
GERARDO C, JAYANTH K, WALKER B. Development of a software framework for rapid optimized design of morphing small UAVs[EB/OL]. [2025-02-04]. https://doi.org/10.2514/6.2024-0908.
|
| 9 |
CYNTHIA R C, ÉDER M S. Ensuring mission assurance while conducting rapid space acquisition, RRA998-1[R]. Santa Monica: RAND, 2022: 2−3.
|
| 10 |
ROBERTA M E. Edwards of space: devising in-space developmental test capabilities for rapid acquisition[EB/OL]. [2025-02-15]. https://doi.org/10.2514/6.2018-5216.
|
| 11 |
白思俊. 现代项目管理[M]. 北京: 航空工业出版社, 2020: 38−40.
|
|
BAI S J. Introduction to project management[M]. Beijing: Aviation Industry Press, 2020: 38−40.
|
| 12 |
NASA/SP-2016-6105. NASA system engineering handbook[S]. Washington D. C. : National Aeronautics and Space Administration, 2017.
|
| 13 |
乐云, 崇丹, 蒋卫平. 大型复杂群体项目分解结构(PBS)概念与方法研究[J]. 项目管理技术, 2010, 8 (2): 39- 40.
|
|
LE Y, CHONG D, JIANG W P. Research on large and complicated programs’ project breakdown structure[J]. Project Management Technology, 2010, 8 (2): 39- 40.
|
| 14 |
WOZNIAK M. Role-based structuring of systems engineering teams[J]. INCOSE International Symposium, 2024, 34 (1): 1008- 1020.
doi: 10.1002/iis2.13192
|
| 15 |
杨保民. SM公司研发管理优化研究[D]. 广州: 广东工业大学, 2023.
|
|
YANG B M. SM company R&D management innovation research[D]. Guangzhou: Guangdong University of Technology, 2023.
|
| 16 |
NASA/SP-20210023927. NASA work breakdown structure (WBS) handbook[S]. Washington D. C. : National Aeronautics and Space Administration, 2021.
|
| 17 |
RAJANI D, SHOBHA R. Work breakdown structure of the project[J]. International Journal of Engineering Research and Applications, 2012, 2 (2): 683- 686.
|
| 18 |
GARCIA J M, FAN I S. A work breakdown structure that integrates different views in aircraft modification projects[J]. Concurrent Engineering, 2003, 11 (1): 47- 54.
doi: 10.1177/1063293X03011001005
|
| 19 |
Project Management Institute. Practice standard for work breakdown structures[M]. 3rd ed. Philadelphia: Project Management Institute, 2019.
|
| 20 |
MIL-STD-881F. Work breakdown structures for defense materiel items[S]. Washington D. C. : USA Department of Defense, 2022.
|
| 21 |
MARK W M, ROBERT J H. Development of hybrid product breakdown structure for NASA ground systems[EB/OL]. [2025-02-10]. https://doi.org/10.2514/6.2013-5404.
|
| 22 |
耿汝光. 大型复杂航空产品项目管理[M]. 北京: 航空工业出版社, 2011: 61−63.
|
|
GENG R G. Project management for new aircraft research & development program[M]. Beijing: Aviation Industry Press, 2011: 61−63.
|
| 23 |
USA Department of Defense. Systems engineering guidebook[R]. Washington D. C. : Office of the Under Secretary of Defense for Research and Engineering, 2022: 12−13.
|
| 24 |
LI J C, ZHAO D L, JIANG J, et al. Capability oriented equipment contribution analysis in temporal combat networks[J]. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2021, 51 (2): 696- 704.
doi: 10.1109/TCYB.2019.2914869
|
| 25 |
MIHIR B, ADITYA C, CHEN X L, et al. The OODA loop of cloudlet-based autonomous drones[C]//Proc. of the IEEE/ACM Symposium on Edge Computing, 2024: 178−190.
|
| 26 |
BRANDON M, SCOTT H, BOGDAN U, et al. Development of human-machine collaborative systems through use of observe-orient-decide-act (OODA) loop[EB/OL]. [2025-02-03]. https://doi.org/10.2514/6.2021-4092.
|
| 27 |
SPERANZON A, DEBRUNNER H, ROSENBLUTH D, et al. Challenge problems in developing a neuro symbolic OODA loop[C]// Proc. of the 17th International Workshop on Neural-Symbolic Learning and Reasoning, 2023: 241−247.
|
| 28 |
JEFFREY M N. A framework for applying the OODA loop to mission control room execution[EB/OL]. [2025-02-18]. https://doi.org/10.2514/6.2015-3223.
|
| 29 |
GRANT T H. A discourse on winning and losing[M]. Montgomery: Air University Press, 2018: 383−384.
|
| 30 |
CHET R. Boyd’s OODA loop: it’s not what you think[M]. Atlanta: J. Addams & Partners Inc, 2018: 7−8.
|