| 1 |
ENGQUIST B, MAJDA A. Numerical radiation boundary conditions for unsteady transonic flow[J]. Journal of Computational Physics, 1981, 40 (1): 91- 103.
doi: 10.1016/0021-9991(81)90201-1
|
| 2 |
MUR G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations[J]. IEEE Trans. on Electromagnetic Compatibility, 1981, EMC-23(4): 377−382.
|
| 3 |
BAYLISS A, TURKEL A. Far field boundary conditions for compressible flows[J]. Journal of Computational Physics, 1982, 48 (2): 182- 199.
doi: 10.1016/0021-9991(82)90046-8
|
| 4 |
SOFIA E, JAN N. Exact non-reflecting boundary conditions revisited: well-posedness and stability[J]. Foundations of Computational Mathematics, 2017, 17, 957- 986.
doi: 10.1007/s10208-016-9310-3
|
| 5 |
VIANEY V, JACOB C B, ACOSTA S. High order local farfield expansions absorbing boundary conditions for multiple scattering[J]. Journal of Computational Physics, 2022, 460, 111187.
doi: 10.1016/j.jcp.2022.111187
|
| 6 |
BERENGER J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1994, 114 (1): 185- 200.
|
| 7 |
GEDNEY S D. An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices[J]. IEEE Trans. on Antennas and Propagation, 1996, 44 (12): 1630- 1639.
doi: 10.1109/8.546249
|
| 8 |
SANKARAN K, FUMEAUX C, VAHLDIECK R, et al. Cell-centered finite-volume-based perfectly matched layer for time-domain Maxwell system[J]. IEEE Trans. on Microwave Theory and Techniques, 2006, 54 (3): 1269- 1275.
doi: 10.1109/TMTT.2006.869704
|
| 9 |
BALSARA D S, et al. An optimized CPML formulation for high order FVTD schemes for CED[J]. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2021, 6 (1): 183- 200.
|
| 10 |
WANG S Q, WEI X, ZHOU Y G, et al. High-order conformal perfectly matched layer for the DGTD method[J]. IEEE Trans. on Antennas and Propagation, 2021, 69 (11): 7753- 7760.
doi: 10.1109/TAP.2021.3084625
|
| 11 |
ZIOLKOWSKI R W, MADSEN N K, CARPENTER R C, et al. Three-dimensional computer modeling of electromagnetic fields: a global lookback lattice truncation scheme[J]. Journal of Computational Physics, 1983, 50 (3): 360- 408.
doi: 10.1016/0021-9991(83)90103-1
|
| 12 |
MOERLOOSE J D, ZUTTER D D. Surface integral representation radiation boundary condition for the FDTD method[J]. IEEE Trans. on Antennas and Propagation, 1993, 41 (7): 890- 896.
doi: 10.1109/8.237619
|
| 13 |
JIAO D, LU M Y, MICHIELSSEN E, et al. A fast time-domain finite element-boundary integral method for electromagnetic analysis[J]. IEEE Trans. on Antennas and Propagation, 2001, 49 (10): 1453- 1461.
doi: 10.1109/8.954934
|
| 14 |
MAYERGOYZ I D, ANDREI P, HAKIM B. A new time-domain approach to the analysis of scattering problems[J]. IEEE Trans. on Magnetics, 2002, 38 (2): 327- 332.
doi: 10.1109/20.996089
|
| 15 |
SARTO M S, SCARLATTI A. Efficient numerical calculation of integral equations boundary conditions for the FDTD method[J]. IEEE Trans. on Magnetics, 2003, 39 (3): 1242- 1245.
doi: 10.1109/TMAG.2003.810373
|
| 16 |
TENG Z H. Exact boundary condition for time-dependent wave equation based on boundary integral[J]. Journal of Computational Physics, 2003, 190 (2): 398- 418.
doi: 10.1016/S0021-9991(03)00281-X
|
| 17 |
SHANKER B, LU M Y, ERGIN A A, et al. Plane-wave time-domain accelerated radiation boundary kernels for FDTD analysis of 3-D electromagnetic phenomena[J]. IEEE Trans. on Antennas and Propagation, 2005, 53 (11): 3704- 3716.
doi: 10.1109/TAP.2005.858590
|
| 18 |
FIRSOV D K, LOVETRI J. FVTD—integral equation hybrid for Maxwell’s equations[J]. International Journal of Numerical Modeling: Electronic Networks, Devices and Fields, 2007, 21 (1/2): 29- 42.
|
| 19 |
LIN Y Q, WIELE D S. Multi-region finite-difference time-domain (MR-FDTD) based on domain-optimal Green’s functions[J]. IEEE Trans. on Antennas and Propagation, 2013, 61 (5): 2655- 2663.
doi: 10.1109/TAP.2013.2238597
|
| 20 |
TAKAHASHI T. A fast time-domain boundary element method for three-dimensional electromagnetic scattering problems[J]. Journal of Computational Physics, 2023, 482, 112053.
doi: 10.1016/j.jcp.2023.112053
|
| 21 |
金建铭. 电磁场有限元方法[M]. 西安: 西安电子科技大学出版社, 1998.
|
|
JIN J M. Finite element method of electromagnetic field[M]. Xi’an: Xidian University Press, 1998.
|
| 22 |
ZHONG Y, WANG H M, HUANG W F, et al. A hybrid loop-tree FEBI method for low-frequency well logging of 3-D structures in layered media[J]. IEEE Trans. on Geoscience and Remote Sensing, 2021, 60, 2001509.
|
| 23 |
SHANKAR V, HALL W F, MOHAMMADIAN A H. A time-domain differential solver for electromagnetics scattering problems[J]. Proceedings of the IEEE, 1989, 77 (5): 709- 721.
doi: 10.1109/5.32061
|
| 24 |
SHANG J S, GAITONDE D. Characteristic-based time-dependent Maxwell equations solvers on a general curvilinear frame[J]. AIAA Journal, 1995, 33 (3): 491- 498.
doi: 10.2514/3.12376
|
| 25 |
SHANG J S. Time-domain electromagnetic scattering simulations on multicomputers[J]. Journal of Computational Physics, 1996, 128 (2): 381- 390.
doi: 10.1006/jcph.1996.0218
|
| 26 |
CAMBEROS J A. Development of finite-volume time-domain, unstructured-grid CEM code on massively parallel platforms[C]//Proc. of the 31th Plasmadynamics & Lasers Conference, 2000.
|
| 27 |
SANKARAN K, FUMEAUX C, VAHLDIECK R. Hybrid PML-ABC truncation techniques for finite-volume time-domain simulations[C]//Proc. of the Asia-Pacific Microwave Conference, 2006.
|
| 28 |
SANKARAN K, FUMEAUX C, VAHLDIECK R, et al. Split and unsplit finite-volume absorbers: formulation and performance comparison[C]//Proc. of the 36th European Microwave Conference: 2006.
|
| 29 |
BAUMANN D, FUMEAUX C, VAHLDIECK R, et al. Conformal perfectly matched absorber for finite-volume time-domain simulations[C]//Proc. of the Asia-Pacific Sympsoium on Electromagnetic Compatibility & 19th International Zurich Symposium on Electromagnetic Compatibility, 2008: 188−191.
|
| 30 |
KROHNE K, BAUMANN D, FUMEAUX C, et al. Frequency-domain finite-volume simulations[C]// Proc. of the 37th European Microwave Conference, 2007.
|
| 31 |
HUH K S, SHU M, AGARWAL R K. A compact high-order finite-volume time-domain/frequency-domain method for electromagnetic scattering[C]//Proc. of the 30th Aerospace Sciences Meeting & Exhibit Conference, 1992.
|
| 32 |
BONNET P, FERRIERES X, GRANDO J, et al. Frequency-domain finite volume method for electromagnetic scattering[C]//Proc. of the IEEE Antennas and Propagation Serenity International Symposium, 1998: 252−255.
|
| 33 |
PULLIAM T H, ZINGG D W. Fundamental algorithms in computational fluid dynamics[M]. Switzerland: Springer, 2014.
|
| 34 |
BLAZEK J. Computational Fluid Dynamics Principles and Applications[M]. 3nd ed. London: Elsevier, 2015.
|
| 35 |
刘久祥, 肖光亮, 郭琨毅, 等. 薄涂覆目标散射中心的精确建模[J]. 系统工程与电子技术, 2023, 45 (6): 1589- 1596.
|
|
LIU J X, XIAO G L, GUO K Y, et al. Accurate scattering center modeling of thin-coated targets[J]. Systems Engineering and Electronics, 2023, 45 (6): 1589- 1596.
|
| 36 |
GIBSON W C. The method of moments in electromagnetics[M]. New York: Chapman and Hall/CRC, 2008.
|
| 37 |
BLAKE D C, BUTER T A. Overset grid methods applied to a finite-volume time-domain maxwell equation solver [C]//Proc. of the 27th Fluid Dynamics, Plasmadynamics and Lasers Conference, 1996: 17−20.
|