| 1 |
成国庆, 周炳海, 李玲. 劣化系统的生产、质量控制与视情维护联合建模与优化[J]. 计算机集成制造系统, 2019, 25 (7): 1620- 1629.
|
|
CHENG G Q, ZHOU B H, LI L. Joint optimization of production, quality control and condition-based maintenance for imperfect system[J]. Computer Integrated Manufacturing Systems, 2019, 25 (7): 1620- 1629.
|
| 2 |
SAFAAI D, SIGERU O, HIROSHI O, et al. Application of a hybrid genetic algorithm to ship maintenance scheduling[J]. IFAC Proceedings Volumes, 1997, 30 (25): 65- 70.
doi: 10.1016/S1474-6670(17)41302-4
|
| 3 |
SAFAAI D, SIGERU O, HIROSHI O. Ship maintenance scheduling by genetic algorithm and constraint-based reasoning[J]. European Journal of Operational Research, 1999, 112 (3): 489- 502.
doi: 10.1016/S0377-2217(97)00399-8
|
| 4 |
顾磊, 钱正芳, 范英, 等. 舰艇装备视情维修间隔模型研究[J]. 华中科技大学学报(自然科学版), 2003, 31 (6): 103- 105.
doi: 10.3321/j.issn:1671-4512.2003.06.035
|
|
GU L, QIAN Z F, FAN Y, et al. The maintenance interval model for vessel equipments depending on situation[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2003, 31 (6): 103- 105.
doi: 10.3321/j.issn:1671-4512.2003.06.035
|
| 5 |
ALASWAD S, XIANG Y S. A review on condition-based maintenance optimization models for stochastically deteriorating systems[J]. Reliability Engineering & System Safety, 2017, 157 (1): 54- 63.
|
| 6 |
刘佳, 杨建军, 谢宗仁. 面向任务的舰艇装备预防性维修规划模型研究[J]. 中国造船, 2016, 57 (4): 157- 163.
doi: 10.3969/j.issn.1000-4882.2016.04.018
|
|
LIU J, YANG J J, XIE Z R. Research on task oriented and preventive maintenance planning model for ship equipment[J]. Shipbuilding of China, 2016, 57 (4): 157- 163.
doi: 10.3969/j.issn.1000-4882.2016.04.018
|
| 7 |
CULLUM J, BINNS J, LONSDALE M, et al. Risk-based maintenance scheduling with application to naval vessels and ships[J]. Ocean Engineering, 2018, 148, 476- 485.
doi: 10.1016/j.oceaneng.2017.11.044
|
| 8 |
AYIK M. Exploiting consecutive one’s structure in the set partitioning problem[D]. California: Naval Postgraduate School, 2000.
|
| 9 |
AYIK M. Optimal long-term aircraft carrier deployment planning with synchronous depot level maintenance scheduling[D]. Monterey: Naval Postgraduate school, 1998.
|
| 10 |
HALL M H. The impact of long term aircraft carrier maintenance scheduling on the fleet readiness plan[D]. California: Naval Postgraduate School, 2004.
|
| 11 |
ROLAND J Y, JAMES G K, JOHN F S, et al. Increasing aircraft carrier forward presence: changing the length of the maintenance cycle [R]. Santa Monica: RAND Corporation, 2008.
|
| 12 |
ROLAND J Y, JOHN F S, JAMES G K. A methodology for estimating the effect of carrier operational cycles on the maintenance industrial base[R]. Santa Monica: RAND Corporation, 2007.
|
| 13 |
ROLAND J Y, JOHN F S, JAMES G K. Aircraft carrier maintenance cycles and their effects[R]. Santa Monica: RAND Corporation, 2008.
|
| 14 |
何春雨, 金家善, 孙丰瑞. 基于LINGO软件的舰船装备修理级别优化分析[J]. 上海交通大学学报, 2011, 45 (1): 78- 82.
|
|
HE C Y, JIN J S, SUN F R. optimization model of ship’s equipment LORA based on LINGO[J]. Journal of Shanghai Jiaotong University, 2011, 45 (1): 78- 82.
|
| 15 |
朱晓军, 张涛, 彭飞, 等. 基于遗传算法的编队条件下舰艇修理周期结构优化[J]. 中国舰艇研究, 2011, 6 (5): 103- 107.
|
|
ZHU X J, ZHANG T, PENG F, et al. Periodical structure optimization of fleet-wide ship repair by genetic algorithm[J]. Chinese Journal of Ship Research, 2011, 6 (5): 103- 107.
|
| 16 |
朱晓军, 张涛, 彭飞, 等. 基于编队时间序列的舰艇修理结构模型[J]. 系统工程与电子技术, 2012, 34 (11): 2285- 2289.
doi: 10.3969/j.issn.1001-506X.2012.11.17
|
|
ZHU X J, ZHANG T, PENG F, et al. Model of maintenance structure of ship based on time series of fleet[J]. Systems Engineering and Electronics, 2012, 34 (11): 2285- 2289.
doi: 10.3969/j.issn.1001-506X.2012.11.17
|
| 17 |
张涛, 朱晓军, 彭飞. 编队作战需求下舰艇修理周期结构的优化[J]. 中国修船, 2011, 24 (4): 51- 55.
doi: 10.3969/j.issn.1001-8328.2011.04.019
|
|
ZHANG T, ZHU X J, PENG F. Optimization of ship repair cycle structure under formation combat requirements[J]. China Ship Repair, 2011, 24 (4): 51- 55.
doi: 10.3969/j.issn.1001-8328.2011.04.019
|
| 18 |
李宣池, 胡俊波, 张志华. 考虑修理结构的舰艇部署能力仿真[J]. 中国舰艇研究, 2015, 10 (5): 123- 128.
|
|
LI X C, HU J B, ZHANG Z H. Simulation analysis of warship deploy ability with maintenance structures involved[J]. Chinese Journal of Ship Research, 2015, 10 (5): 123- 128.
|
| 19 |
周成杰, 蒋铁军. 基于“双控”维修模式的装备维修计划制定方法[J]. 兵器装备工程学报, 2019, 40(12): 125-130.
|
|
ZHOU C J, JIANG T J. Equipment maintenance plan formulation method based on “double control” maintenance mode[J]. Journal of Weapon Equipment Engineering, 2019, 40(12): 125-130.
|
| 20 |
KAMEL G, ALY M F, MOHIB A. Optimization of a multilevel integrated preventive maintenance scheduling mathematical model using genetic algorithm[J]. International Journal of Management Science and Engineering Management, 2020, 15 (4): 247- 257.
doi: 10.1080/17509653.2020.1726834
|
| 21 |
NGUYEN V, KULKARNI A, KOTINIS M, et al. Development of an optimization algorithm based on differential evolution for the navy ship maintenance scheduling problem [C]//Proc.of the Intelligent ships symposium, 2015.
|
| 22 |
HOSSEINI S, KALAM S, BARKER K. Scheduling multi-component maintenance with a greedy heuristic local search algorithm[J]. Soft Computation, 2020, 12 (24): 351- 366.
|
| 23 |
ANDREW A, KUMANAN S. Development of an intelligent decision making tool for maintenance planning using fuzzy logic and dynamic scheduling[J]. International Journal of Information Technology, 2020, 12 (1): 27- 36.
doi: 10.1007/s41870-019-00384-w
|
| 24 |
HU J M, WANG Y H, PANG Y T, et al. Optimal maintenance scheduling under uncertainties using linear programming-enhanced reinforcement learning[J]. Engineering Applications of Artificial Intelligence, 2022, 109, 104655- 104698.
|
| 25 |
PARALIKAR H S. Systems and methods for machine learning base equipment maintenance scheduling[P]. US: US20210182046A1, 2021.
|
| 26 |
BECHERER M, ZIPPERLE M, KARDUCK A. Intelligent choice of machine learning methods for predictive maintenance of intelligent machines[J]. International Journal of Computer Systems Science & Engineering, 2020, 35 (2): 81- 89.
|
| 27 |
LOURENO A, FERNANDES M, CANITO A. Using an explainable machine learning approach to minimize opportunistic maintenance interventions[C]//Proc. of the International Conference on Practical Applications of Agents and Multi-agent Systems, 2022.
|
| 28 |
裴凤雀, 张佳煊, 刘检华, 等. 考虑设备劣化的加工工时预测方法[J]. 计算机集成制造系统, 2024, 30 (3): 906- 916.
|
|
PEI F Q, ZHANG J X, LIU J H, et al. Variable processing time prediction method considering equipment deterioration[J]. Computer Integrated Manufacturing Systems, 2024, 30 (3): 906- 916.
|
| 29 |
贾术艳, 宋雨童, 杨紫都. 基于生长曲线函数的货车运营环节碳达峰研究[J]. 交通运输系统工程与信息, 2021, 21 (6): 310- 318.
|
|
JIA S Y, SONG Y T, YANG Z D. Process of peak carbon emissions of trucks during operating activities based on growth curve function[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21 (6): 310- 318.
|
| 30 |
刘斌, 赵天舒, 张冉霞. 基于改进PCA-Logistic模型对个人汽车保有量预测[J]. 公路交通科技, 2020, 37 (6): 136- 143.
|
|
LIU B, ZHAO T S, ZHANG R X. Prediction of private car ownership based on improved PCA-Logistic model[J]. Journal of Highway and Transportation Research and Development, 2020, 37 (6): 136- 143.
|
| 31 |
赵乃刚, 邓景顺. 粒子群优化算法综述[J]. 科技创新导报, 2015, 12 (26): 216- 217.
|
|
ZHAO N G, DENG J S. Overview of particle swarm optimization algorithms[J]. Science and Technology Innovation Journal, 2015, 12 (26): 216- 217.
|
| 32 |
YUHUI S, ENGELBRECHT R. Empirical study of particle swarm optimization[C]// Proc. of the Congress on Evolutionary Computation, 1999.
|