| 1 |
PAN Y, XIE D X, ZHAO Y R, et al. Overview of radar jamming waveform design[J]. Remote Sensing, 2025, 17 (7): 1218.
doi: 10.3390/rs17071218
|
| 2 |
TAN M, WANG C Y, XUE B, et al. A novel deceptive jamming approach against frequency diverse array radar[J]. IEEE Sensors Journal, 2020, 21 (6): 8323- 8332.
|
| 3 |
WANG Z, GUO Z W, SHU G F, et al. Radar jamming recognition: models, methods, and prospects[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18, 3315- 3343.
doi: 10.1109/JSTARS.2024.3522951
|
| 4 |
LI N, CHENG D Y, LU P P, et al. Smart jamming against SAR based on nonlinear frequency-modulated signal[J]. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59 (4): 3588- 3605.
doi: 10.1109/TAES.2022.3228513
|
| 5 |
ZHANG Y P, ZHAO Z J, BU Y. Radar active jamming recognition under open world setting[J]. Remote Sensing, 2023, 15 (16): 4107.
doi: 10.3390/rs15164107
|
| 6 |
ZHOU K, SU Y, WANG D Y, et al. Improved SAR interrupted-sampling repeater jamming countermeasure based on waveform agility and mismatched filter design[J]. IEEE Trans. on Geoscience and Remote Sensing, 2023, 61
|
| 7 |
DU P M, CILLIERS J E, OLIVIER K. Design and performance of wideband DRFM for radar test and evaluation[J]. Electronics Letters, 2011, 47 (14): 824- 825.
doi: 10.1049/el.2011.0362
|
| 8 |
LUO Z, CAO Y, YEO T S, et al. Few-shot radar jamming recognition network via time-frequency self-attention and global knowledge distillation[J]. IEEE Trans. on Geoscience and Remote Sensing, 2023, 61, 5105612.
|
| 9 |
ZHOU H P, WANG L, GUO Z Y. Recognition of radar compound jamming based on convolutional neural network[J]. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59 (6): 7380- 7394.
doi: 10.1109/TAES.2023.3288080
|
| 10 |
LUO Z, CAO Y, YEO T S, et al. Few-shot radar jamming recognition network via complete information mining[J]. IEEE Trans. on Aerospace and Electronic Systems, 2024, 60 (3): 3625- 3638.
doi: 10.1109/TAES.2024.3370129
|
| 11 |
崔国龙, 余显祥, 魏文强, 等. 认知智能雷达抗干扰技术综述与展望[J]. 雷达学报, 2022, 11 (6): 974- 1002.
doi: 10.12000/JR22191
|
|
CUI G L, YU X X, WEI W Q, et al. An overview of antijamming methods and future works on cognitive intelligent radar[J]. Journal of Radars, 2022, 11 (6): 974- 1002.
doi: 10.12000/JR22191
|
| 12 |
郝万兵, 马若飞, 洪伟. 基于时频特征提取的雷达有源干扰识别[J]. 火控雷达技术, 2017, 46 (4): 11- 15.
doi: 10.3969/j.issn.1008-8652.2017.04.003
|
|
HAO W B, MA R F, HONG W. Recognition of active radar jamming based on time-frequency feature extraction[J]. Fire Control Radar Technology, 2017, 46 (4): 11- 15.
doi: 10.3969/j.issn.1008-8652.2017.04.003
|
| 13 |
杨兴宇, 阮怀林. 基于局部二值模式特征的新型干扰识别算法[J]. 计算机工程, 2018, 44 (7): 285- 290.
|
|
YANG X Y, RUAN H L. A novel interference recognition algorithm based on local binary pattern feature[J]. Computer Engineering, 2018, 44 (7): 285- 290.
|
| 14 |
李娜. 雷达有源干扰分类与识别方法研究[D]. 西安: 西安电子科技大学, 2017.
|
|
LI N. Research on classification and recognition methods of radar active jamming[D]. Xi’an: Xidian University, 2017.
|
| 15 |
SHAO G Q, CHEN Y, WEI Y. Convolutional neural network-based radar jamming signal classification with sufficient and limited samples[J]. IEEE Access, 2020, 8, 80588- 80598.
doi: 10.1109/ACCESS.2020.2990629
|
| 16 |
LV Q Z, FAN H, LIU J, et al. Multilabel deep learning-based lightweight radar compound jamming recognition method[J]. IEEE Trans. on Instrumentation and Measurement, 2024, 73
|
| 17 |
LV Q Z, QUAN Y, FENG W, et al. Radar deception jamming recognition based on weighted ensemble CNN with transfer learning[J]. IEEE Trans. on Geoscience and Remote Sensing, 2021, 60
|
| 18 |
SHAO G Q, CHEN Y, WEI Y. Deep fusion for radar jamming signal classification based on CNN[J]. IEEE Access, 2020, 8, 117236- 117244.
doi: 10.1109/ACCESS.2020.3004188
|
| 19 |
HOU L L, ZHANG S N, WANG C X, et al. Jamming recognition of carrier-free UWB cognitive radar based on MANet[J]. IEEE Trans. on Instrumentation and Measurement, 2023, 72
|
| 20 |
张顺生, 陈爽, 陈晓莹, 等. 面向小样本的多模态雷达有源欺骗干扰识别方法[J]. 雷达学报, 2023, 12 (4): 882- 891.
doi: 10.12000/JR23104
|
|
ZHANG S S, CHEN S, CHEN X Y, et al. Active deception jamming recognition method in multimodal radar based on small samples[J]. Journal of Radars, 2023, 12 (4): 882- 891.
doi: 10.12000/JR23104
|
| 21 |
WEI Z L, FU N, JIANG S Y, et al. Parameter measurement of LFM signal with FRI sampling and nuclear norm denoising[J]. IEEE Trans. on Instrumentation and Measurement, 2022, 71
|
| 22 |
VAN H G, MOSQUERA C, NAPOLES G. A review on the long short-term memory model[J]. Artificial intelligence review, 2020, 53 (8): 5929- 5955.
doi: 10.1007/s10462-020-09838-1
|
| 23 |
XIA T, DANG T, HAN J, et al. Uncertainty-aware health diagnostics via class-balanced evidential deep learning[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28 (11): 6417- 6428.
doi: 10.1109/JBHI.2024.3360002
|
| 24 |
HAN Z B, ZHANG C Q, FU H Z. Trusted multi-view classification with dynamic evidential fusion[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2023, 45 (2): 2551- 566.
doi: 10.1109/TPAMI.2022.3171983
|
| 25 |
BAO W T, YU Q, KONG Y. Evidential deep learning for open set action recognition[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 13349−13358.
|
| 26 |
MAO A Q, MOHRI M, ZHONG Y T. Cross-entropy loss functions: theoretical analysis and applications[C]//Proc. of the International Conference on Machine Learning, 2023: 23803−23828.
|
| 27 |
KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. [2025-03-15]. http://arxiv.org/abs/1412.6980.
|
| 28 |
VAN D, HINTION G. Visualizing high-dimensional data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9 (2): 2579- 2605.
|
| 29 |
WANG D B, FENG L, ZHANG M L. Rethinking calibration of deep neural networks: do not be afraid of overconfidence[J]. Advances in Neural Information Processing Systems, 2021, 34, 11809- 11820.
|
| 30 |
KRISHNAN R, TICKOO O. Improving model calibration with accuracy versus uncertainty optimization[J]. Advances in Neural Information Processing Systems, 2020, 33, 18237- 18248.
|
| 31 |
ABDAR M, POURPANAH F, HUSSAIN S, et al. A review of uncertainty quantification in deep learning: techniques, applications and challenges[J]. Information Fusion, 2021, 76, 243- 297.
doi: 10.1016/j.inffus.2021.05.008
|