系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (11): 3644-3654.doi: 10.12305/j.issn.1001-506X.2025.11.13

• 传感器与信号处理 • 上一篇    

基于多域精细化特征提取和主观逻辑的雷达干扰识别方法

尹林伟(), 周凯(), 陈冬冬(), 姚辉伟(), 王梦妮()   

  1. 中国人民解放军 63892部队,河南 洛阳 471032
  • 收稿日期:2025-04-15 接受日期:2025-08-12 出版日期:2025-11-25 发布日期:2025-12-08
  • 通讯作者: 尹林伟 E-mail:602268379@qq.com;zhoukai1523@yeah.net;cdd_nudt@163.com;pla0611@163.com;mnwang9@163.com
  • 作者简介:周 凯(1992—),男,助理研究员,博士,主要研究方向为雷达对抗仿真、雷达信号处理
    陈冬冬(1982—),男,副研究员,硕士,主要研究方向为雷达对抗仿真、雷达信号处理、组网雷达
    姚辉伟(1982—),男,副研究员,博士,主要研究方向为雷达对抗仿真、雷达信号处理、组网雷达
    王梦妮(1997—),女,研究实习员,硕士,主要研究方向为雷达对抗仿真、雷达信号处理、组网雷达
  • 基金资助:
    国家自然科学青年基金(62301566)资助课题

Radar jamming recognition method based on multi-domain refined feature extraction and subjective logic

Linwei YIN(), Kai ZHOU(), Dongdong CHEN(), Huiwei YAO(), Mengni WANG()   

  1. Unit 63892 of the PLA,Luoyang 471032,China
  • Received:2025-04-15 Accepted:2025-08-12 Online:2025-11-25 Published:2025-12-08
  • Contact: Linwei YIN E-mail:602268379@qq.com;zhoukai1523@yeah.net;cdd_nudt@163.com;pla0611@163.com;mnwang9@163.com

摘要:

为提高雷达干扰识别的准确率并对模型的判决结果进行可靠性度量,提出一种基于多域精细化特征提取和主观逻辑的雷达干扰识别方法。首先,设计注意力长短时记忆模块。该模块不仅在一维卷积特征的基础上挖掘信号中蕴含的全局时序依赖关系,还动态量化不同时间片段对分类任务的贡献度,实现时域精细化特征提取。其次,基于干扰信号的时频图形状先验设计多角度条形池化模块。该模块通过不同角度的条形池化核聚合上下文信息并生成对应的注意力掩膜,增强模型关键区域的定位能力并抑制背景噪声的干扰,实现时频域精细化特征提取。最后,将拼接融合后的特征向量通过全连接层映射至狄利克雷分布空间,并基于主观逻辑理论建模了网络对输入信号的判决结果及其可靠性度量。实验结果表明,所提方法不仅较次优对比方法准确率提升1.89%,还能够准确量化模型判决结果的可靠性,在识别性能与可靠性度量方面具有双重优势。

关键词: 雷达干扰识别, 注意力长短时记忆模块, 多角度条形池化模块, 主观逻辑理论

Abstract:

To enhance the accuracy of radar jamming recognition and quantify the confidence of model judgement results, a radar jamming recognition method based on multi-domain refined feature extraction and subjective logic is proposed. Firstly, an attention long short-term memory module is designed to leverage global temporal dependencies in signals based on one-dimensional convolution features and dynamically quantify the contribution of different time segments to the classification task, achieving refined feature extraction in the time domain. Secondly, based on the shape prior of interference signal time-frequency diagram, a multi-angle strip pooling module is designed, which uses strip pooling kernels at different angles to aggregate contextual information and generate attention masks, thereby enhancing model key region localization ability and suppressing background noise and relalizing time-frequency domain fine feature extraction. Finally, the concatenated and fused feature vectors are mapped to the Dirichlet distribution space through a fully connected layer, and the network’s judgment results on the input signals and their reliability measures are modeled based on the subjective logic theory. Experimental results demonstrate that the proposed method achieves a 1.89% improvement in accuracy over the next-best approach and provides accurate measurement of prediction confidence, showing dual advantages in recognition performance and reliability measurement.

Key words: radar jamming recognition, attention long short-term memory (A-LSTM) module, multi-angle strip pooling (MASP) module, subjective logic theory

中图分类号: