系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (9): 3011-3021.doi: 10.12305/j.issn.1001-506X.2025.09.22
• 系统工程 • 上一篇
郭国强1,2,*(), 牛智奇2(
), 李亚超1(
), 陈锰2(
), 田卫东2(
), 陈文喜2(
)
收稿日期:
2024-09-19
出版日期:
2025-09-25
发布日期:
2025-09-16
通讯作者:
郭国强
E-mail:hwpermanent@163.com;niuzhiqi@126.com;ycli@mail.xidian.edu.cn;bq203cm@163.com;18706899256@163.com;chenwenxi_2008@163.com
作者简介:
牛智奇(1983—),男,研究员,博士,主要研究方向为导弹总体设计基金资助:
Guoqiang GUO1,2,*(), Zhiqi NIU2(
), Yachao LI1(
), Meng CHEN2(
), Weidong TIAN2(
), Wenxi CHEN2(
)
Received:
2024-09-19
Online:
2025-09-25
Published:
2025-09-16
Contact:
Guoqiang GUO
E-mail:hwpermanent@163.com;niuzhiqi@126.com;ycli@mail.xidian.edu.cn;bq203cm@163.com;18706899256@163.com;chenwenxi_2008@163.com
摘要:
针对空地导弹打击装甲类目标时导引头方案优选问题,提出离差最大化准则下的多目标多属性最优组合赋权和云模型的多模复合导引头方案评估和优选方法。通过分析导弹总体对导引头的使用需求,构建多模复合导引头方案评估指标层次模型;运用离差最大化的方法对3种评价方法所得权重系数进行最优组合;利用浮动云算法和最优权重得到综合评价云,结合建立的基准评价云图,得到方案评估和优选结果。4种复合导引头方案优选结果表明,所提方法能够对方案进行量化评估。所提方法为导引头方案评估和优选提供依据。
中图分类号:
郭国强, 牛智奇, 李亚超, 陈锰, 田卫东, 陈文喜. 综合最优赋权和云模型的导引头方案优选方法[J]. 系统工程与电子技术, 2025, 47(9): 3011-3021.
Guoqiang GUO, Zhiqi NIU, Yachao LI, Meng CHEN, Weidong TIAN, Wenxi CHEN. Comprehensive optimization method for seeker scheme integrating optimal weighting and cloud model[J]. Systems Engineering and Electronics, 2025, 47(9): 3011-3021.
表3
指标熵值列表"
序号 | C层次指标 | 熵值ej | 熵冗余度rej |
1 | C11 | 0.746 2 | 0.253 8 |
2 | C12 | 0.778 3 | 0.221 7 |
3 | C13 | 0.796 0 | 0.204 0 |
4 | C14 | 0.796 0 | 0.204 0 |
5 | C15 | 0.755 3 | 0.244 7 |
6 | C16 | 0.755 2 | 0.244 8 |
7 | C21 | 0.735 0 | 0.265 0 |
8 | C22 | 0.765 2 | 0.234 8 |
9 | C23 | 0.765 2 | 0.234 8 |
10 | C24 | 0.796 0 | 0.204 0 |
11 | C25 | 0.752 3 | 0.247 7 |
12 | C31 | 0.755 2 | 0.244 8 |
13 | C32 | 0.735 0 | 0.265 0 |
14 | C33 | 0.679 9 | 0.320 1 |
15 | C34 | 0.784 6 | 0.215 4 |
16 | C35 | 0.721 3 | 0.278 7 |
17 | C36 | 0.796 0 | 0.204 0 |
18 | C41 | 0.692 1 | 0.307 9 |
19 | C42 | 0.692 1 | 0.307 9 |
20 | C43 | 0.735 0 | 0.265 0 |
21 | C44 | 0.769 9 | 0.230 1 |
22 | C45 | 0.633 6 | 0.366 4 |
23 | C51 | 0.692 1 | 0.307 9 |
24 | C52 | 0.692 1 | 0.307 9 |
25 | C53 | 0.735 0 | 0.265 0 |
26 | C54 | 0.675 9 | 0.324 1 |
27 | C55 | 0.796 0 | 0.204 0 |
28 | C61 | 0.792 4 | 0.207 6 |
29 | C62 | 0.779 5 | 0.220 5 |
30 | C63 | 0.784 8 | 0.215 2 |
31 | C64 | 0.725 8 | 0.274 2 |
32 | C65 | 0.695 8 | 0.304 2 |
表5
激光/红外复合导引头专家评分表"
指标 | 专家 | ||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
C11 | 54 | 57 | 58 | 54 | 57 | 50 | 57 | 53 | 57 | 55 | 57 | 50 | 55 | 51 | 51 |
C12 | 56 | 55 | 53 | 55 | 50 | 55 | 53 | 55 | 53 | 56 | 51 | 51 | 55 | 54 | 56 |
C13 | 75 | 80 | 81 | 79 | 75 | 81 | 75 | 88 | 88 | 88 | 76 | 75 | 81 | 87 | 82 |
C14 | 81 | 81 | 80 | 83 | 78 | 83 | 79 | 79 | 74 | 73 | 78 | 76 | 73 | 71 | 73 |
C15 | 64 | 62 | 62 | 58 | 55 | 66 | 66 | 57 | 65 | 64 | 57 | 55 | 59 | 57 | 55 |
C16 | 84 | 89 | 86 | 81 | 83 | 80 | 82 | 80 | 89 | 81 | 88 | 85 | 87 | 83 | 82 |
C21 | 64 | 60 | 62 | 63 | 63 | 58 | 67 | 54 | 65 | 59 | 57 | 63 | 67 | 59 | 61 |
C22 | 77 | 69 | 72 | 76 | 78 | 77 | 76 | 70 | 71 | 72 | 71 | 69 | 69 | 69 | 72 |
C23 | 77 | 76 | 77 | 76 | 75 | 75 | 72 | 75 | 72 | 77 | 75 | 76 | 78 | 77 | 74 |
C24 | 72 | 77 | 74 | 82 | 84 | 84 | 82 | 78 | 81 | 71 | 73 | 72 | 80 | 82 | 76 |
C25 | 58 | 55 | 59 | 67 | 59 | 62 | 58 | 56 | 66 | 65 | 63 | 63 | 56 | 59 | 59 |
C31 | 82 | 83 | 90 | 91 | 81 | 90 | 87 | 90 | 92 | 85 | 94 | 88 | 80 | 86 | 88 |
C32 | 85 | 82 | 86 | 82 | 83 | 87 | 86 | 80 | 86 | 88 | 82 | 80 | 81 | 83 | 81 |
C33 | 86 | 81 | 82 | 80 | 82 | 86 | 86 | 78 | 87 | 81 | 83 | 85 | 86 | 81 | 80 |
C34 | 63 | 67 | 60 | 63 | 69 | 62 | 68 | 67 | 65 | 68 | 70 | 62 | 68 | 61 | 63 |
C35 | 71 | 84 | 80 | 79 | 83 | 72 | 85 | 78 | 79 | 80 | 73 | 71 | 70 | 77 | 83 |
C36 | 83 | 81 | 82 | 92 | 86 | 92 | 92 | 83 | 93 | 87 | 86 | 82 | 87 | 88 | 87 |
C41 | 88 | 80 | 81 | 86 | 85 | 81 | 89 | 89 | 92 | 92 | 81 | 88 | 88 | 90 | 86 |
C42 | 86 | 90 | 92 | 93 | 93 | 92 | 88 | 88 | 92 | 90 | 92 | 89 | 93 | 87 | 86 |
C43 | 62 | 64 | 57 | 56 | 53 | 52 | 50 | 52 | 51 | 60 | 57 | 57 | 54 | 58 | 52 |
C44 | 57 | 57 | 59 | 53 | 56 | 55 | 55 | 52 | 52 | 60 | 60 | 54 | 59 | 56 | 60 |
C45 | 55 | 61 | 62 | 52 | 58 | 52 | 57 | 58 | 58 | 58 | 52 | 53 | 54 | 53 | 52 |
C51 | 84 | 82 | 82 | 81 | 85 | 88 | 89 | 80 | 84 | 91 | 92 | 81 | 87 | 87 | 88 |
C52 | 87 | 91 | 87 | 82 | 86 | 88 | 85 | 81 | 86 | 82 | 88 | 84 | 90 | 89 | 82 |
C53 | 86 | 89 | 81 | 93 | 91 | 81 | 88 | 89 | 83 | 90 | 86 | 80 | 84 | 84 | 82 |
C54 | 90 | 90 | 90 | 93 | 85 | 84 | 87 | 80 | 92 | 83 | 90 | 88 | 88 | 92 | 87 |
C55 | 75 | 73 | 70 | 71 | 65 | 68 | 69 | 72 | 71 | 75 | 67 | 66 | 70 | 68 | 66 |
C61 | 85 | 89 | 89 | 89 | 90 | 91 | 88 | 83 | 89 | 84 | 88 | 86 | 86 | 84 | 90 |
C62 | 85 | 81 | 89 | 85 | 87 | 84 | 85 | 83 | 81 | 83 | 83 | 90 | 85 | 83 | 87 |
C63 | 89 | 88 | 81 | 84 | 83 | 89 | 82 | 85 | 84 | 83 | 81 | 83 | 85 | 83 | 89 |
C64 | 84 | 80 | 81 | 78 | 79 | 75 | 81 | 76 | 89 | 85 | 89 | 79 | 88 | 79 | 83 |
C65 | 80 | 80 | 78 | 75 | 78 | 85 | 85 | 78 | 77 | 82 | 76 | 83 | 79 | 75 | 89 |
13 | ALHADIDI I T, ALOMARI H A. A FAHP-VIKOR model for evaluating single point interchange operational performance[J]. Expert Systems with Applications, 2024, 248, 123386. |
14 | KHASAWNEH A M, DWEIRI F. Analyzing the digital infrastructure enabling project management success: a hybrid FAHP-FTOPSIS approach[J]. Applied Sciences, 2024, 14 (17): 8080. |
15 | TOMPKINS M, IAMMARTINO R, FOSSACECA J. Multiattribute framework for requirements elicitation in phased array radar systems[J]. IEEE Trans. on Engineering Management, 2020, 67 (2): 347- 367. |
16 | 杨静, 邱菀华. 模糊互补判断矩阵一致性检验和改进方法研究[J]. 控制与决策, 2009, 24 (6): 903- 906,910. |
YANG J, QIU W H. Research on consistency test and modification approach of fuzzy judgement matrix[J]. Control and Decision, 2009, 24 (6): 903- 906,910. | |
17 | HUANG H P, HUANG S C, CHEN J T, et al. Image hiding algorithm in discrete cosine transform domain based on grey prediction and grey relational analysis[J]. China Communications, 2013, 10 (7): 57- 70. |
18 | 程呈, 高敏, 程旭德, 等. 基于组合赋权的反坦克导弹武器系统作战效能评估研究[J]. 系统工程理论与实践, 2018, 38 (1): 241- 251. |
CHENG C, GAO M, CHENG X D, et al. Research on operational efficiency evaluation of anti-tank missile weapon system based on combination weighting[J]. Systems Engineering-Theory and Practice, 2018, 38 (1): 241- 251. | |
19 | MONICA D, FABIO M. Deviation maximization for rank-revealing QR factorizations[J]. Numerical Algorithms, 2022, 91 (3): 1047- 1079. |
20 | 孟凡宇, 刘明哲, 徐皑冬, 等. 基于组合赋权和云模型的工业通信质量评估[J]. 计算机工程与设计, 2023, 44 (1): 22- 29. |
MENG F Y, LIU M Z, XU A D, et al. Industrial communication quality evaluation based on combination weighting and cloud model[J]. Computer Engineering and Design, 2023, 44 (1): 22- 29. | |
21 | ZHANG T, SUN H, XU Z H, et al. Comparison of three active microwave models of forest growing stock volume based on the idea of the water cloud model[J]. Remote Sensing, 2023, 15 (11): 28- 48. |
22 | 杨洁, 王国胤, 刘群, 等. 正态云模型研究与展望[J]. 计算机学报, 2018, 41 (3): 724- 744. |
YANG J, WANG G Y, LIU Q, et al. Retrospect and prospect of research of normal cloud model[J]. Chinese Journal of Computers, 2018, 41 (3): 724- 744. | |
23 | GAO H B, ZHANG X Y, LIU Y C, et al. Cloud model approach for lateral control of intelligent vehicle systems[J]. Scientific Programming, 2016, 24 (12): 6842- 891. |
24 | 严惊涛, 刘树光. 基于组合赋权的对地攻击无人机自主能力云模型评价[J]. 北京航空航天大学学报, 2023, 49 (12): 3500- 3510. |
YAN J T, LIU S G. Cloud model evaluation of autonomous capability of ground-attack UAV based on combined weighting[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (12): 3500- 3510. | |
25 | 金建刚, 蔡忠义, 黄泽贵, 等. 基于组合赋权和正态云模型的电子对抗系统健康状态评估[J]. 系统工程与电子技术, 2024, 46(12): 4140−4148. |
JIN J G, CAI Z Y, HUANG Z G, et al. The health state assessment of electronic countermeasure system based on combination weighting and normal cloud model[J]. Systems Engineering and Electronics, 2024, 46(12): 4140−4148. | |
26 | 高洪波, 张新钰, 张天雷, 等. 基于云模型的智能驾驶车辆变粒度测评研究[J]. 电子学报, 2016, 44 (2): 365- 373. |
GAO H B, ZHANG X Y, ZHANG T L, et al. Research on variable particle size measurement of intelligent vehicle based on cloud model[J]. Acta Electronica Sinica, 2016, 44 (2): 365- 373. | |
27 | 徐计, 王国胤, 于洪. 基于粒计算的大数据处理[J]. 计算机学报, 2015, 38 (8): 1497- 1517. |
XU J, WANG G Y, YU H. Big data processing based on granular computing[J]. Chinese Journal of Computers, 2015, 38 (8): 1497- 1517. | |
28 | 李德毅, 杜鹢. 不确定性人工智能[M]. 北京: 国防工业出版社, 2014. |
1 | 刘彤杰, 宋洪庆, 张杰, 等. 模糊层次分析法在我国深空探测方案优选应用探究[J]. 工程科学学报, 2022, 44 (8): 1433- 1443. |
LIU T J, SONG H Q, ZHANG J, et al. Application of the fuzzy analytic hierarchy process in deep space exploration program optimization in China[J]. Chinese Journal of Engineering, 2022, 44 (8): 1433- 1443. | |
2 | 张军涛, 李尚生, 王旭坤. 基于灰色关联-模糊综合评判的雷达抗干扰性能评估方法[J]. 系统工程与电子技术, 2021, 43 (6): 1557- 1563. |
ZHANG J T, LI S S, WANG X K. Method of radar anti-jamming performance evaluation based on grey correlation-fuzzy comprehensive evaluation[J]. Systems Engineering and Electronics, 2021, 43 (6): 1557- 1563. | |
3 | 田晨智, 宋敏, 薛瑞君, 等. 基于眼动指标和熵权-TOPSIS空战控制能力评估[J]. 系统工程与电子技术, 2023, 45 (6): 1743- 1754. |
TIAN C Z, SONG M, XUE R J, et al. Air combat control capability evaluation based on eye movement index and entropy weighted-TOPSIS[J]. Systems Engineering and Electronics, 2023, 45 (6): 1743- 1754. | |
4 | 杨峰, 王碧垚, 赵慧波, 等. 基于云模型的战略预警信息系统效能评估[J]. 系统工程与电子技术, 2014, 36 (7): 1334- 1338. |
YANG F, WANG B Y, ZHAO H B, et al. Effectiveness evaluation for strategy early-warning information system based on cloud models[J]. Systems Engineering and Electronics, 2014, 36 (7): 1334- 1338. | |
5 | 曾盛富, 梁浩全, 王岩, 等. 基于改进的组合赋权和云模型的平流层飞艇健康状态评估[EB/OL]. [2024-08-19]. https://doi.org/10.13700/j.bh.1001-5965.2023.0713. |
ZENG S F, LIANG H Q, WANG Y, et al. Health status assessment of stratospheric airship based on improved combination weighting and cloud model[EB/OL]. [2024-08-19]. https://doi.org/10.13700/j.bh.1001-5965.2023.0713. | |
6 | SWETHAA S, FELIX A. An intuitionistic dense fuzzy AHP-TOPSIS method for military robot selection[J]. Journal of Intelligent & Fuzzy Systems, 2023, 44 (4): 6749- 6774. |
7 | JANA C, PAL M. A dynamical hybrid method to design decision making process based on GRA approach for multiple attributes problem[J]. Engineering Application of Artificial Intelligence, 2021, 100 (82): 104203. |
8 | BASARAN S, IGHAGBON A O. Enhanced FMEA methodology for evaluating mobile learning platforms using grey relational analysis and fuzzy AHP[J]. Applied Sciences, 2024, 14 (19): 8844. |
9 | LI Z, LUO Z J, WANG Y, et al. Suitability evaluation system for the shallow geothermal energy implementation in region by entropy weight and TOPSIS method[J]. Renewable Energy, 2022, 184, 564- 576. |
10 | MATHEW M, CHAKRABORTTY R K, RYAN M J. Selection of an optimal maintenance strategy under uncertain conditions: an interval type-2 fuzzy AHP-TOPSIS method[J]. IEEE Trans. on Engineering Management, 2022, 69 (4): 1121- 1134. |
11 | JIANG J C, LIU X D, GARG H, et al. Large group decision-making based on interval rough integrated cloud model[J]. Advanced Engineering Informatics, 2023, 56, 101964. |
12 | LI S , WANG G Y , YANG J. Survey on cloud model based similarity measure of uncertain concepts[J]. CAAI Transactions on Intelligence Technology, 2019, 4 (4): 223- 230. |
28 | LI D Y, DU Y. Artificial intelligence with uncertainty[M]. Beijing: National Defense Industry Press, 2014. |
29 | 刘海军, 柳征, 姜文利, 等. 基于云模型和矢量神经网络的辐射源识别方法[J]. 电子学报, 2010, 38 (12): 2797- 2804. |
LIU H J, LIU Z, JIANG W L, et al. Approach based on cloud model and vector neural network for emitter identification[J]. Acta Electronica Sinica, 2010, 38 (12): 2797- 2804. | |
30 | 汪涛, 周文雅, 郭继唐, 等. 改进高斯云模型及其在装备保障体系能力评估中的应用[J]. 系统工程与电子技术, 2024, 46 (5): 1673- 1681. |
WANG T, ZHOU W Y, GUO J T, et. al. Improved Gaussian cloud model and its application in equipment support system capability evaluation[J]. Systems Engineering and Electronics, 2024, 46 (5): 1673- 1681. |
[1] | 胡涛, 刘昊邦, 陈童, 王宇江, 李明贵, 杜凯. 基于IAHP-CRITIC二维云模型的舰船电力系统韧性评价[J]. 系统工程与电子技术, 2025, 47(1): 217-229. |
[2] | 汪涛, 周文雅, 郭继唐, 王博. 改进高斯云模型及其在装备保障体系能力评估中的应用[J]. 系统工程与电子技术, 2024, 46(5): 1673-1681. |
[3] | 金建刚, 蔡忠义, 黄泽贵, 邓灏, 游亮. 基于组合赋权和正态云模型的电子对抗系统健康状态评估[J]. 系统工程与电子技术, 2024, 46(12): 4140-4148. |
[4] | 李佳坤, 李彦彬, 宋亚飞. 地空导弹装备高原训练安全风险评估[J]. 系统工程与电子技术, 2020, 42(3): 653-659. |
[5] | 沈延安, 张君彪. 基于云模型和证据理论的装备管理绩效评价[J]. 系统工程与电子技术, 2019, 41(5): 1049-1055. |
[6] | 弓晓敏, 于长锐. 基于云模型的改进TODIM方案评价方法[J]. 系统工程与电子技术, 2018, 40(7): 1539-1547. |
[7] | 庞育才, 刘松. 基于改进人工蜂群算法的MIMO雷达稀疏阵列优化[J]. 系统工程与电子技术, 2018, 40(5): 1026-1030. |
[8] | 李琳琳, 路云飞, 张壮, 和何. 基于云模型的指挥控制系统效能评估[J]. 系统工程与电子技术, 2018, 40(4): 815-822. |
[9] | 孙海文, 谢晓方, 孙涛, 张龙杰. 基于DDBN-Cloud的舰艇编队防空目标威胁评估方法[J]. 系统工程与电子技术, 2018, 40(11): 2466-. |
[10] | 逯程, 徐廷学, 赵骏. 基于DSm证据云物元模型的装备状态评估方法[J]. 系统工程与电子技术, 2017, 39(7): 1549-1554. |
[11] | 陈砚桥, 蔡芝明, 金家善, 孙立杰, 曹凯. 多指标约束下考虑保障效能的装备多层级备件携行方案优化[J]. 系统工程与电子技术, 2017, 39(7): 1532-1541. |
[12] | 韩小孩, 张耀辉, 张仕新, 王少华. 故障规律未知时的装备任务成功性评估方法[J]. 系统工程与电子技术, 2017, 39(6): 1414-1419. |
[13] | 林松, 汪军, 朱建军, 张世涛. 考虑双重预期的云模型决策[J]. 系统工程与电子技术, 2017, 39(4): 821-828. |
[14] | 魏子杰, 陈圣俭. 基于多特征云关联度的容差电路诊断算法[J]. 系统工程与电子技术, 2017, 39(12): 2665-2670. |
[15] | 金艳, 李曙光, 姬红兵. 脉冲噪声中基于数据可信度加权的跳频信号检测[J]. 系统工程与电子技术, 2016, 38(9): 2171-2178. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||