1 |
汪燕梅, 徐海晖. 浅析无人机在海事监管中的应用[J]. 中国水运, 2020, 20 (1): 44- 45.
|
|
WANG Y M , XU H H . On the application of UAV in maritime supervision[J]. China Water Transport, 2020, 20 (1): 44- 45.
|
2 |
苏文. 智慧海洋通信网络系统建设研究[J]. 中国信息化, 2019 (8): 81- 82.
|
|
SU W . Research on the construction of intelligent ocean commu nication network system[J]. Zhongguo Xinxihua, 2019 (8): 81- 82.
|
3 |
HU Y F, XU L, GAO J C, et al. Analysis of marine wireless communication channel under high sea conditions[C]//Proc. of the IEEE 5th International Conference on Electronic Information and Communication Technology, 2022: 274-277.
|
4 |
黄柏铭. 卫星数据压缩[M]. 哈尔滨: 哈尔滨工业大学出版社, 2015.
|
|
HUANG B M . Satellite data compression[M]. Harbin: Harbin Institure of Technology Press, 2015.
|
5 |
许小华, 陈豹, 王海菁, 等. 基于改进YOLOv4-Tiny的河湖船舶目标检测算法[J]. 人民长江, 2023, 54 (9): 264- 271.
|
|
XU X H , CHEN B , WANG H J , et al. Object detection algorithm for ships on rivers and lakes based on improved YOLOv4-Tiny[J]. Yangtze River, 2023, 54 (9): 264- 271.
|
6 |
WU F Y, DONG C, QU Y B, et al. CIOFL: collaborative infer ence-based online federated learning for UAV object detection[C]// Proc. of the IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems, 2022: 258-259.
|
7 |
FANG L L, HU H R, BI J Q. Research on UAV target recognition technology based on federated learning[C]//Proc. of the 2nd International Conference on Computer Engineering and In-telligent Control, 2021: 119-122.
|
8 |
KHAN F S, KHAN S, MOHD M, et al. Federated learning-based UAVs for the diagnosis of plant diseases[C]//Proc. of the International Conference on Engineering and Emerging Techno-logies, 2022.
|
9 |
SUN T K, WANG X Y, UMEHIRA M, et al. Split learning assisted multi-UAV system for image classification task[C]//Proc. of the IEEE 97th Vehicular Technology Conference, 2023.
|
10 |
WANG R. Privacy-preserving incentive scheme design for UAV-enabled federated learning[C]//Proc. of the IEEE Wireless Communications and Networking Conference, 2024.
|
11 |
HOU X , WANG J , JIANG C , et al. UAV enabled covert fede rated learning[J]. IEEE Trans.on Wireless Communication, 2023, 22 (10): 6793- 6809.
doi: 10.1109/TWC.2023.3245621
|
12 |
LYU B Y . Analysis and research on common lossless data compression algorithms[J]. Electronics World, 2019, 562 (4): 5- 6.
|
13 |
LI L D , MA T H , YOU W B . Analysis of common lossless compression algorithm[J]. Electronic Design Engineering, 2009, 17 (1): 49-50, 53.
|
14 |
蒋鹏, 吴建峰, 吴斌, 等. 基于自适应最优消零的无线传感器网络数据压缩算法研究[J]. 通信学报, 2013, 34 (2): 1- 7.
|
|
JIANG P , WU J F , WU B , et al. Data compression method for wireless sensor networks based on adaptive optimal zero suppression[J]. Journal of Communications, 2013, 34 (2): 1- 7.
|
15 |
LUO J , JIANG G R , JIANG Y R . A new scatheless compression scheme for oceanological grid data[J]. Marine Forecasts, 2011, 28 (3): 55- 61.
|
16 |
LIU C , LI Y F , CHEN H . Improvement and implementation of lossless data compression technology based on LZW[J]. Electronic Design Engineering, 2019, 27 (24): 51- 56.
|
17 |
KALAIYARASI D , KALPALATHA R . Design and imple-mentation of least mean square adaptive FIR filter using offset binary coding based distributed arithmetic, microprocessors and microsystems[J]. Microprocessors and Microsystems, 2019, 71, 102884.
|
18 |
WU X Y . Research of arithmetic coding in image compression[J]. Computer Digital and Engineering, 2017, 45 (9): 1863- 1865.
|
19 |
陈海生, 郭晓云, 王峰, 等. 基于北斗短报文的渔获信息压缩传输方法[J]. 农业工程学报, 2015, 31 (22): 155- 160.
|
|
CHEN H S , GUO X Y , WANG F , et al. Fishery harvesting information compressing and transmitting method based on Beidou short message[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31 (22): 155- 160.
|
20 |
欧阳中辉, 樊辉锦, 陈青华, 等. 基于北斗短报文的特种车辆状态信息压缩传输方法研究[J]. 兵器装备工程学报, 2020, 41 (9): 124- 129.
|
|
OUYANG Z H , FAN H J , CHEN Q H , et al. Research on compression transmission method of special vehicle status information based on beidou short message[J]. Journal of Ordnance Equipment Engineering, 2020, 41 (9): 124- 129.
|
21 |
HUANG M, WANG B J, WAN J C, et al. Improved blood cell detection method based on YOLOv5 algorithm[C]//Proc. of the IEEE 6th Information Technology Networking Electronic and Automation Control Conference, 2023: 992-996.
|
22 |
WU H, ZHAO X L, QIAO J H, et al. An improved YOLOv5 algorithm for elderly fall detection[C]//Proc. of the International Conference on Innovation, Knowledge, and Management, 2023: 83-88.
|
23 |
ZHU D, DAI L, DU P. CCE-YOLOv5s: an improved YOLOv5 model for UAV small target detection[C]//Proc. of the IEEE 5th International Conference on Civil Aviation Safety and Information Technology, 2023: 824-829.
|
24 |
SU T , ZHANG J , YU Z , et al. STKD: distilling knowledge from synchronous teaching for efficient model compression[J]. IEEE Trans.on Neural Networks and Learning System, 2023, 34 (12): 10051- 10054.
|
25 |
PENG Y T , CHENG K H , FANG I S , et al. Single image reflection removal based on knowledge-distilling content disentanglement[J]. IEEE Signal Processing Letters, 2022, 29, 568- 572.
|
26 |
CHAMBI S , LEMIRE D , KASER O , et al. Better bit-map performance with roaring bit-maps[J]. Software: Practice and Experience, 2016, 46 (5): 709- 719.
|
27 |
LEMIRE D , SI Y , KAI G , et al. Consistently faster and smaller compressed bitmaps with roaring[J]. Software: Practice and Experience, 2016, 46 (11): 1547- 1569.
|
28 |
HU L. An improved YOLOv5 algorithm of target recognition[C]//Proc. of the IEEE 2nd International Conference on Electrical Engineering, Big Data and Algorithms, 2023: 1373-1377.
|
29 |
XU L D, WU Z B, SUN J, et al. A distributed hyperspectral target detection algorithm based on background reconstruction for cloud platforms[C]//Proc. of the 13th Workshop on Hyperspectral Imaging and Signal Procession: Evolution in Remote Sensing, 2023.
|
30 |
ZHANG S Y , LI J , SHI L . Federated learning in intelligent transportation systems: recent applications and open problems[J]. IEEE Trans.on Intelligent Transportation Systems, 2023, 25 (5): 3259- 3285.
|