系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (4): 1214-1221.doi: 10.12305/j.issn.1001-506X.2025.04.18

• 系统工程 • 上一篇    下一篇

基于改进TRACLUS算法的船舶轨迹聚类研究

祁文娟1, 刘志恒1,2,*, 周绥平1, 江澄3, 节永师3, 石磊1   

  1. 1. 西安电子科技大学空间科学与技术学院, 陕西 西安 710126
    2. 自然资源部矿山地质灾害成灾机理与防控重点实验室, 陕西 西安 710054
    3. 北京空间机电研究所先进光学遥感技术北京市重点实验室, 北京 100094
  • 收稿日期:2024-01-30 出版日期:2025-04-25 发布日期:2025-05-28
  • 通讯作者: 刘志恒
  • 作者简介:祁文娟 (1999—), 女, 硕士研究生, 主要研究方向为时序数据预测
    刘志恒 (1990—), 男, 讲师, 博士, 主要研究方向为遥感科学与技术
    周绥平 (1968—), 男, 教授, 博士, 主要研究方向为分布式虚拟环境、人工智能与空间科学大数据分析
    江澄 (1985—), 男, 研究员, 博士, 主要研究方向为遥感数据处理及应用
    节永师 (1992—), 男, 高级工程师, 博士, 主要研究方向为遥感图像处理与信息提取
    石磊 (1981—), 男, 教授, 博士, 主要研究方向为空间测控通信、空间目标探测识别
  • 基金资助:
    自然资源部国土卫星遥感应用重点实验室开放基金(KLSMNR-G202303);先进光学遥感技术北京市重点实验室开放基金(AORS20238);陕西省土地整治重点实验室(300102353502);陕西省自然科学基础研究计划(2023-JC-QN-0299);国家自然科学基金(62371375);陕西省创新能力支撑计划(2022TD-37)

Research on ship trajectory clustering based on improved TRACLUS algorithm

Wenjuan QI1, Zhiheng LIU1,2,*, Suiping ZHOU1, Cheng JIANG3, Yongshi JIE3, Lei SHI1   

  1. 1. School of Aerospace Science & Technology, Xidian University, Xi'an 710126, China
    2. Key Laboratory of Mine Geological Hazards Mechanism and Control, Ministry of Natural Resources, Xi'an 710054, China
    3. Beijing Key Laboratory of Advanced Optical Remote Sensing Technology, Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China
  • Received:2024-01-30 Online:2025-04-25 Published:2025-05-28
  • Contact: Zhiheng LIU

摘要:

随着船舶自动识别系统(automatic identification system, AIS)的发展, 利用船舶轨迹数据进行聚类分析已成为海洋交通管理和船舶行为分析的关键环节。然而, 现有基于轨迹点的聚类方法未能充分考虑轨迹时序性, 而以整条轨迹为聚类对象则易导致计算效率低和忽视局部信息。针对上述问题, 提出一种基于改进TRACLUS算法的船舶行为分析框架, 使用Hausdorff距离计算轨迹相似性度。所提框架分为3个部分: 基于特征点的轨迹划分, 将整条轨迹进行分段,以考虑轨迹公共子轨迹; 轨迹段聚类, 采用基于密度的聚类算法对轨迹段进行聚类, 形成轨迹簇; 代表性轨迹提取, 使用扫描线方法在轨迹簇中识别出具有相似行为模式的路径。利用港口数据作为数据集, 结果表明改进的聚类算法相比原轨迹聚类(trajectory clustering, TRACLUS)算法在效果和运行效率上均有提升, 能有效提取研究区域内的船舶整体运动趋势和局部相似航行行为。

关键词: 轨迹聚类, 船舶行为, 自动识别系统

Abstract:

With the advancement of ship automatic identification system (AIS), clustering analysis through ship trajectory data has become a critical component in marine traffic management and ship behavior analysis. However, the existing clustering methods based on trajectory points do not adequately consider the temporal aspect of trajectories, and clustering the entire trajectory leads to low computational efficiency and overlook of local information. To address these issues, this paper proposes a ship behavior analysis framework based on an improved trajectory clustering (TRACLUS) algorithm, utilizing Hausdorff distance to assess trajectory similarity. The proposed framework comprises three parts: Trajectory segmentation based on feature points, which segments the entire trajectory to account for common sub-trajectories; Trajectory segment clustering, using the density-based spatial clustering of application with noise (DBSCAN) algorithm to form trajectory clusters; Representative trajectory extraction, employing a scanning line method to identify paths with similar behavior patterns within the clusters. Utilizing data from the ports as a dataset, the results demonstrate that the improved clustering algorithm surpasses the original TRACLUS algorithm in both effectiveness and efficiency, effectively extracting the ship overall movement trends and local similar navigation behaviors within the study area.

Key words: trajectory clustering, ship behavior, automatic identification system (AIS)

中图分类号: