1 |
周成宝, 周荻. 面向摆动喷管的导弹非线性姿态控制[J]. 系统工程与电子技术, 2016, 38 (5): 1107- 1113.
|
|
ZHOU C B , ZHOU D . Nonlinear attitude control of missiles oriented to swinging nozzles[J]. Systems Engineering and Electronics, 2016, 38 (5): 1107- 1113.
|
2 |
魏泽宇, 许文波, 张国林, 等. 航天机电伺服系统的自抗扰控制[J]. 控制理论与应用, 2021, 38 (1): 73- 80.
|
|
WEI Z Y , XU W B , ZHANG G L , et al. Active disturbance rejection control of aerospace electromechanical servo system[J]. Control Theory & Applications, 2021, 38 (1): 73- 80.
|
3 |
SUN W C , GAO H J , YAO B . Adaptive robust vibration control of full-car active suspensions with electrohydraulic actuators[J]. IEEE Trans.on Control Systems Technology, 2013, 21 (6): 2417- 2422.
doi: 10.1109/TCST.2012.2237174
|
4 |
ZHAO S D , WANG J , WANG L , et al. Iterative learning control of electro-hydraulic proportional feeding system in slotting machine for metal bar cropping[J]. International Journal of Machine Tools & Manufacture, 2005, 45 (7): 923- 931.
|
5 |
SUN G F , LIU J . Dynamic responses of hydraulic crane during luffing motion[J]. Mechanism and Machine Theory, 2006, 41 (11): 1273- 1288.
doi: 10.1016/j.mechmachtheory.2006.01.008
|
6 |
LYNN A, SMID E, ESHRAGHI M, et al. Modeling hydraulic regenerative hybrid vehicles using AMESim and Matlab/Simulink[C]//Proc. of the SPIE. International Society for Optical Engineering, 2005: 24-40.
|
7 |
LIU C Q , JIANG Y F , ZHANG Z Z , et al. Research on electro-hydraulic servo system of air rudder on model reference adaptive control[J]. Journal of Physics: Conference Series, 2020, 1650 (2): 022001.
doi: 10.1088/1742-6596/1650/2/022001
|
8 |
付永领, 朱承建. 基于AMEsim软件的大负载电液位置伺服系统分析及仿真[J]. 机床与液压, 2007, 35 (8): 210-211, 242.
|
|
FU Y L , ZHU C J . Heavy load electric and hydraulic position servo system analysis and simulation based on AMEsim[J]. Machine Tool & Hydraulics, 2007, 35 (8): 210-211, 242.
|
9 |
何星星, 廖瑛, 唐凯. 基于一体化建模技术的液压舵机动力学仿真分析[J]. 弹箭与制导学报, 2012, 32 (4): 9-12, 22.
doi: 10.3969/j.issn.1673-9728.2012.04.003
|
|
HE X X , LIAO Y , TANG K . Simulation analysis of hydraulic servo dynamics based on integrated modeling technology[J]. Journal of Projectiles, Arrows and Guidance, 2012, 32 (4): 9-12, 22.
doi: 10.3969/j.issn.1673-9728.2012.04.003
|
10 |
SEBASTIAN A, THOMAS P, ALEX S. Servo design and analysis of thrust vector control of launch vehicle[C]//Proc. of the IEEE Innovations in Power and Advanced Computing Technologies, 2017.
|
11 |
WANG X , SUN Q . Consistency check of degradation mechanism between natural storage and enhancement test for missile servo system[J]. Journal of Systems Engineering and Electro-nics, 2019, 30 (2): 415- 424.
doi: 10.21629/JSEE.2019.02.19
|
12 |
范天祥. 导弹伺服系统虚拟样机仿真与验证[D]. 哈尔滨: 哈尔滨工业大学, 2020.
|
|
FAN T X. Simulation and verification of virtual prototype of missile servo system[D]. Harbin: Harbin Institute of Techno-logy, 2020.
|
13 |
ZHANG B , XU B , XIA C L , et al. Modeling and simulation on axial piston pump based on virtual prototype technology[J]. Chinese Journal of Mechanical Engineering, 2009, 22 (1): 84- 90.
doi: 10.3901/CJME.2009.01.084
|
14 |
ZHEN Z , LIU C Y , ZHANG Y K , et al. The combined simulation of high-speed parallel manipulator based on Matlab, SolidWorks and ADAMS[J]. Applied Mechanics and Mate-rials, 2014, 716-717, 1578- 1581.
doi: 10.4028/www.scientific.net/AMM.716-717.1578
|
15 |
WANG X R , SONG W , XUE T , et al. Dynamics analyses of rigid-flexible coupling of spot-welding robot[J]. Journal of Advanced Manufacturing Systems, 2020, 19 (4): 855- 867.
doi: 10.1142/S0219686720500407
|
16 |
QIAO G , LIU G , SHI Z H , et al. A review of electromechanical actuators for more/all electric aircraft systems[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232 (22): 4128- 4151.
doi: 10.1177/0954406217749869
|
17 |
MAO P J , ZHANG F , ZHANG G Y . Data exchange method between ADAMS, CATIA and Solid Works software[J]. App-lied Mechanics and Materials, 2011, 143-144, 422- 427.
doi: 10.4028/www.scientific.net/AMM.143-144.422
|
18 |
LI F , WANG K , MA C L , et al. Dynamic modeling and tracking control simulation for large electro-hydraulic servo system[J]. Applied Mechanics and Materials, 2013, 416-417, 811- 816.
doi: 10.4028/www.scientific.net/AMM.416-417.811
|
19 |
MENG Y D, GAN H Y, YAN Y, et al. Research on a typical electro-hydraulic servo system simulation[C]//Proc. of the IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference, 2021: 1325-1328.
|
20 |
LI C X, CHEN H B. Adaptive robust control for electro-hydraulic servo system of a projectile transfer arm[C]//Proc. of the 4th International Conference on Automation, Control and Robotics Engineering, 2019: 68.
|
21 |
NGUYEN M H , DAO H V , AHN K K . Active disturbance rejection control for position tracking of electro-hydraulic servo systems under modeling uncertainty and external load[J]. Actuators, 2021, 10 (2): 20.
doi: 10.3390/act10020020
|
22 |
ZHU H L , MOK H S , LEE H G , et al. Controller design of BLDC motor fin position servo system by employing H-infinity loop shaping method[J]. The Transactions of the Korean Institute of Power Electronics, 2019, 24 (1): 49- 55.
|
23 |
SU S J , ZHU Y Y , LI C J , et al. Dual-valve parallel prediction control for an electro-hydraulic servo system[J]. Science Progress, 2020, 103 (1): 1- 21.
|
24 |
KISAKA M . Design of sensitivity function of multirate VCM control system[J]. Electrical Engineering in Japan, 2013, 185 (4): 53- 59.
doi: 10.1002/eej.22296
|
25 |
YANG G C . Dual extended state observer-based backstepping control of electro-hydraulic servo systems with time-varying output constraints[J]. Transactions of the Institute of Mea-surement and Control, 2020, 42 (5): 1070- 1080.
|
26 |
CHENG C , LIU S Y , WU H Z . Sliding mode observer-based fractional-order proportional-integral-derivative sliding mode control for electro-hydraulic servo systems[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234 (10): 1887- 1898.
|
27 |
MENG Z W , ZHANG T Z , ZHANG H X , et al. Energy management strategy for an electromechanical-hydraulic coupled power electric vehicle considering the optimal speed threshold[J]. Energies, 2021, 14 (17): 5300.
|
28 |
BUENO B , STREET M , PFLUG T , et al. A co-simulation modelling approach for the assessment of a ventilated double-skin complex fenestration system coupled with a compact fan-coil unit[J]. Energy & Buildings, 2017, 151, 18- 27.
|
29 |
DAD C , TAVELLA J P , VIALLE S . Synthesis and feedback on the distribution and parallelization of FMI-CS-based co-simulations with the DACCOSIM platform[J]. Parallel Computing, 2021, 106, 102802.
|
30 |
NEGRI E , FUMAGALLI L , CIMINO C , et al. FMU-supported simulation for CPS digital twin[J]. Procedia Manufacturing, 2019, 28, 201- 206.
|