系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (12): 3603-3613.doi: 10.12305/j.issn.1001-506X.2021.12.23
陶希闻*, 江文奇
收稿日期:
2021-01-14
出版日期:
2021-11-24
发布日期:
2021-11-30
通讯作者:
陶希闻
作者简介:
陶希闻 (1995—), 男, 博士研究生, 主要研究方向为评价与决策|江文奇 (1976—), 男, 教授, 博士生研究导师, 博士, 主要研究方向为评价与决策
基金资助:
Xiwen TAO*, Wenqi JIANG
Received:
2021-01-14
Online:
2021-11-24
Published:
2021-11-30
Contact:
Xiwen TAO
摘要:
个体一致性检验、群体偏好集结、群体共识改进是达成共识的三个关键阶段, 高一致性、高共识度、低共识成本分别是群体共识构建三个阶段的重要决策目标。本文通过分析群体共识构建过程中三个核心阶段对共识实现的影响, 建立了各个决策阶段的优先模型。首先, 针对犹豫模糊偏好关系的评价值特征, 设计了融合局部标准化系数的一致性检验和调整模型, 为实施群体信息集结提供可靠的模糊判断; 其次, 以贴近度为诱导值实施犹豫模糊偏好关系群体信息集结, 结合统计推断方法设计共识度阈值, 科学刻画群体共识水平; 然后, 针对群体共识度水平较低的情形, 设计了融合优化集结权重和最小调整距离的共识改进模型, 有效减少群体共识改进中的信息损失与迭代次数。最后, 通过比较分析凸显所提决策方法的可行性和优越性。
中图分类号:
陶希闻, 江文奇. 面向群体共识的三阶段犹豫模糊型信息融合方法研究[J]. 系统工程与电子技术, 2021, 43(12): 3603-3613.
Xiwen TAO, Wenqi JIANG. Research on three-stage hesitant fuzzy information fusion method for group consensus[J]. Systems Engineering and Electronics, 2021, 43(12): 3603-3613.
表1
决策群体HFPR评价值"
专家 | hq12 | hq13 | hq14 |
e1 | {0.3, 0.4} | {0.5, 0.7} | {0.4} |
e2 | {0.3, 0.5} | {0.1, 0.2} | {0.5, 0.6, 0.7} |
e3 | {0.3, 0.5} | {0.5, 0.7} | {0.7, 0.8} |
e4 | {0.4, 0.5, 0.6} | {0.3, 0.4} | {0.5, 0.7} |
专家 | hq23 | hq24 | hq34 |
e1 | {0.7, 0.9} | {0.8, 0.9, 1.0} | {0.6, 0.7} |
e2 | {0.7, 0.8} | {0.1, 0.5} | {0.5, 0.7} |
e3 | {0.2, 0.4} | {0.5, 0.6} | {0.7, 0.8, 0.9} |
e4 | {0.3} | {0.6, 0.7, 0.8} | {0.8, 0.9} |
表3
决策群体标准化HFPR评价值"
专家 | ${\bar h}$q12 | ${\bar h}$q13 | ${\bar h}$q14 |
e1 | {0.3, 0.3, 0.4} | {0.5, 0.5, 0.7} | {0.4, 0.4, 0.4} |
e2 | {0.3, 0.38, 0.5} | {0.1, 0.2, 0.2} | {0.5, 0.6, 0.7} |
e3 | {0.3, 0.39, 0.5} | {0.5, 0.5, 0.7} | {0.7, 0.7, 0.8} |
e4 | {0.4, 0.5, 0.6} | {0.3, 0.33, 0.4} | {0.5, 0.5, 0.7} |
专家 | ${\bar h}$q23 | ${\bar h}$q24 | ${\bar h}$q34 |
e1 | {0.7, 0.7, 0.9} | {0.8, 0.9, 1.0} | {0.6, 0.6, 0.7} |
e2 | {0.7, 0.73, 0.8} | {0.1, 0.5, 0.5} | {0.5, 0.7, 0.7} |
e3 | {0.2, 0.29, 0.4} | {0.5, 0.6, 0.6} | {0.7, 0.8, 0.9} |
e4 | {0.3, 0.3, 0.3} | {0.6, 0.7, 0.8} | {0.8, 0.9, 0.9} |
表7
决策群体HFPR评价值(算例2)"
专家 | hq12 | hq13 | hq14 |
e1 | {0.52, 0.60} | {0.30, 0.60} | {0.27, 0.30, 0.80} |
e2 | {0.42, 0.70} | {0.31, 0.45, 0.50} | {0.27, 0.55} |
e3 | {0.26, 0.40, 0.55} | {0.60, 0.70} | {0.20, 0.55} |
e4 | {0.22, 0.58} | {0.25, 0.50} | {0.45, 0.60, 0.70} |
专家 | ${\bar h}$q23 | ${\bar h}$q24 | ${\bar h}$q34 |
e1 | {0.22, 0.53, 0.73} | {0.30, 0.60} | {0.30, 0.78} |
e2 | {0.35, 0.55} | {0.36, 0.57} | {0.63, 0.80} |
e3 | {0.30, 0.45} | {0.25, 0.30, 0.45} | {0.48, 0.55, 0.61} |
e4 | {0.52, 0.63, 0.78} | {0.26, 0.56} | {0.25, 0.45, 0.66} |
表10
决策群体HFPR评价值(算例3)"
专家 | hq12 | hq13 | hq14 |
e1 | {0.25, 0.40} | {0.25, 0.35} | {0.30, 0.46, 0.50} |
e2 | {0.15, 0.30} | {0.15, 0.15, 0.15} | {0.25, 0.45} |
e3 | {0.35, 0.45, 0.55} | {0.60, 0.80} | {0.52, 0.63} |
e4 | {0.61, 0.84} | {0.15, 0.50} | {0.20, 0.40, 0.55} |
专家 | ${\bar h}$q23 | ${\bar h}$q24 | ${\bar h}$q34 |
e1 | {0.37, 0.43, 0.50} | {0.28, 0.38} | {0.25, 0.30} |
e2 | {0.10, 0.25} | {0.65, 0.78} | {0.46, 0.53} |
e3 | {0.53, 0.76} | {0.12, 0.33, 0.65} | {0.12, 0.23, 0.30} |
e4 | {0.35, 0.35, 0.35} | {0.46, 0.72} | {0.43, 0.50} |
1 | LIU H B , JIAN G L . Optimizing consistency and consensus improvement process for hesitant fuzzy linguistic preference relations and the application in group decision making[J]. Information Fusion, 2020, 56 (4): 114- 127. |
2 | WAN S P , ZHONG L , DONG J . A new method for group decision making with hesitant fuzzy preference relations based on multiplicative consistency[J]. IEEE Trans.on Fuzzy Systems, 2020, 28 (7): 1449- 1463. |
3 | WU Z B , XU J P . Managing consistency and consensus in group decision making with hesitant fuzzy linguistic preference relations[J]. Omega, 2016, 65 (12): 28- 40. |
4 | ZHANG Z M , CHEN S M , WANG C . Group decision making based on multiplicative consistency and consensus of fuzzy linguistic preference relations[J]. Information Sciences, 2020, 509 (9): 71- 86. |
5 | WAN S P , XU G L , DONG J Y . An atanassov intuitionistic fuzzy programming method for group decision making with interval-valued Atanassovintuitionistic fuzzy preference relations[J]. Applied Soft Computing Journal, 2020, 95 (10): 106556. |
6 | 金飞飞, 倪志伟, 陈华友, 等. 基于一致性局部调整算法和DEA的语言偏好决策模型[J]. 中国管理科学, 2019, 27 (12): 152- 163. |
JIN F F , NI Z W , CHEN H Y , et al. Language preference decision model based on consistency local adjustment algorithm and DEA[J]. Chinese Journal of Management Science, 2019, 27 (12): 152- 163. | |
7 |
LI C C , RODRIGUEZ R M , MARTINEZ L , et al. Consensus building with individual consistency control in group decision making[J]. IEEE Trans.on Fuzzy Systems, 2019, 27 (2): 319- 332.
doi: 10.1109/TFUZZ.2018.2856125 |
8 |
DEL M , MARIA J , CHICLANA F , et al. A comparative study on consensus measures in group decision making[J]. International Journal of Intelligent Systems, 2018, 33 (8): 1624- 1638.
doi: 10.1002/int.21954 |
9 |
LIU X , XU Y J , MONTES R , et al. Analysis of self-confidence indices-based additive consistency for fuzzy preference relations with self-confidence and its application in group decision making[J]. International Journal of Intelligent Systems, 2019, 34 (5): 920- 946.
doi: 10.1002/int.22081 |
10 | 罗世华, 刘俊. 改进排序的梯形直觉模糊Choquet Bonferroni算子的多属性群决策方法[J]. 中国管理科学, 2020, 28 (1): 134- 143. |
LUO S H , LIU J . Improved multi-attribute group decision making method of trapezoidal intuitive fuzzy Choquet Bonferroni operator for sorting[J]. Chinese Journal of Management Science, 2020, 28 (1): 134- 143. | |
11 | YAGER R R , FILEV D P . Induced ordered weighted averaging operators[J]. IIEEE Trans.on Systems Man and Cybernetics Part B-Cybernetics, 1999, 29 (4): 141- 150. |
12 |
YAGER R R . Quantifier guided aggregation using OWA operators[J]. International Journal of Intelligent Systems, 1996, 11 (1): 49- 73.
doi: 10.1002/(SICI)1098-111X(199601)11:1<49::AID-INT3>3.0.CO;2-Z |
13 | XU Y , CABRERIZO F J , HERRERA V E . A consensus model for hesitant fuzzy preference relations and its application in water allocation management[J]. Applied Soft Computing, 2017, 58 (9): 265- 284. |
14 |
XIAN S D , YU D X , SUN Y F . A Novel outranking method for multiple-criteria decision making with interval-valued Pythagorean fuzzy linguistic information[J]. Computational & Applied Mathematics, 2020, 39 (2): 43- 349.
doi: 10.1007/s40314-020-1064-5?utm_source=xmol |
15 | 钟晓芳, 兰红娟, 江文奇. 共识驱动的区间直觉模糊型多准则群体决策信息融合模型[J]. 系统工程与电子技术, 2020, 42 (7): 1558- 1566. |
ZHONG X F , LAN H J , JIANG W Q . Consensus driven information fusion model for interval intuitionistic fuzzy multi-criteria group decision[J]. Systems Engineering and Electronics, 2020, 42 (7): 1558- 1566. | |
16 | 魏翠萍, 马京. 犹豫模糊语言群决策的共识性模型[J]. 控制与决策, 2018, 33 (2): 275- 281. |
WEI C P , MA J . Consensus model for hesitant fuzzy linguistic group decision making[J]. Controland Decision, 2018, 33 (2): 275- 281. | |
17 | CAO M , WU J , CHICLANA F , et al. A personalized consensus feedback mechanism based on maximum harmony degree[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2019, 243 (7): 654- 668. |
18 | TANG M , ZHOU X , LIAO H , et al. Ordinal consensus measure with objective threshold for heterogeneous large-scale group decision making[J]. Knowledge-Based Systems, 2019, 180 (15): 62- 74. |
19 |
ZHANG H J , DONG Y C , FRANCISC O . Consensus efficiency in group decision making a comprehensive comparative study and its optimal design[J]. European Journal of Operational Research, 2019, 275 (2): 580- 598.
doi: 10.1016/j.ejor.2018.11.052 |
20 |
WU Z , HUANG S , XU J . Multi-stage optimization models for individual consistency and group consensus with preference relations[J]. European Journal of Operational Research, 2019, 275 (1): 182- 194.
doi: 10.1016/j.ejor.2018.11.014 |
21 | 董庆兴, 朱克毓, 梁昌勇. 基于双重反馈机制的语言型动态群体评价方法[J]. 系统工程学报, 2018, 33 (5): 710- 720. |
DONG Q X , ZHU K Y , LIANG C Y . Linguistic dynamic group evaluation methodbased on dual feedback mechanism[J]. Journal of Systems Engineering, 2018, 33 (5): 710- 720. | |
22 |
LIU X , XU Y , MONTES R , et al. Alternative ranking-based clustering and reliability index-based consensus reaching process for hesitant fuzzy large scale group decision making[J]. IEEE Trans.on Fuzzy Systems, 2019, 27 (1): 159- 171.
doi: 10.1109/TFUZZ.2018.2876655 |
23 | SHI Z J , WANG X Q , IVAN P , et al. A novel consensus model for multi-attribute large-Scale group decision making based on comprehensive behavior classification and adaptive weight updating[J]. Knowledge-Based Systems, 2018, 158 (15): 196- 208. |
24 | XU X H , DU Z J , CHEN X H . Confidence consensus-based model for large-scale group decision making: a novel approach to managing non-cooperative behaviors[J]. Information Sciences, 2019, 477 (10): 410- 427. |
25 | LIU N N , HE Y , XU Z S . A new approach to deal with consistency and consensus issues for hesitant fuzzy linguistic preference rela-tions[J]. Applied Soft Computing, 2019, 76 (6): 400- 415. |
26 | WU N N , XU Y J , LIU X , et al. Water-energy-food nexus evaluation with a social network group decision making approach based on hesitant fuzzy preference relations[J]. Applied Soft Computing Journal, 2020, 93 (8): 106363. |
27 | TORRA V . Hesitant fuzzy sets[J]. International Journal of Intelligent Systems, 2010, 25 (6): 529- 539. |
28 | 徐泽水, 任珮嘉. 犹豫模糊偏好决策研究进展与前景[J]. 系统工程理论与实践, 2020, 40 (8): 2193- 2202. |
XU Z S , REN P J . A survey of decision making with hesitant fuzzy preference relations: progress and prospect[J]. System Engineering Theory and Practice, 2020, 40 (8): 2193- 2202. | |
29 | ZHANG Z M , WANG C , TIAN D Z , et al. Induced generali-zed hesitant fuzzy operators and their application to multiple attribute group decision making[J]. Computers & Industrial Engineering, 2014, 67 (1): 116- 138. |
30 |
YAGER R R . Quantifier guided aggregation using OWA operators[J]. International Journal of Intelligent Systems, 1996, 11 (1): 49- 73.
doi: 10.1002/(SICI)1098-111X(199601)11:1<49::AID-INT3>3.0.CO;2-Z |
31 |
XU Y J , LIU X , WANG H M . The additive consistency measure of fuzzy reciprocal preference relations[J]. International Journal of Machine Learning and Cybernetics, 2018, 9 (7): 1141- 1152.
doi: 10.1007/s13042-017-0637-0 |
32 | YANG Y , WANG X X , XU Z S . The multiplicative consistency threshold of intuitionistic fuzzy preference relation[J]. Information Sciences, 2019, 477 (10): 349- 368. |
33 | ZHANG Z M , WANG C , TIAN X D . A decision support model for group decision making with hesitant fuzzy preference relations[J]. Knowledge-Based Systems, 2015, 86 (5): 77- 101. |
[1] | 郑诺希, 李武, 周小强, 刘钢. 多属性相似度一致性投影决策法[J]. 系统工程与电子技术, 2022, 44(9): 2869-2877. |
[2] | 符小卫, 潘静. 无人机集群规避动态障碍物的分布式队形控制[J]. 系统工程与电子技术, 2022, 44(2): 529-537. |
[3] | 罗哲, 权婉珍, 张朴睿, 杨小冈. 单边Lipschitz非线性多智能体系统一致性追踪控制[J]. 系统工程与电子技术, 2022, 44(1): 279-284. |
[4] | 刘宏伟, 谢敏, 魏兵, 袁浩波. 高效率计算光滑平台上远距离天线间互耦算法[J]. 系统工程与电子技术, 2022, 44(1): 28-33. |
[5] | 符小卫, 陈子浩. 基于一致性协议的多无人机协同围捕控制方法[J]. 系统工程与电子技术, 2021, 43(9): 2501-2507. |
[6] | 徐扬, 韩明仁, 邵将, 罗德林. 基于MRPs的卫星集群系统姿态对抗一致性控制[J]. 系统工程与电子技术, 2021, 43(7): 1904-1911. |
[7] | 张毅, 方国伟, 杨秀霞. 具有性能预设的多机编队目标跟踪控制[J]. 系统工程与电子技术, 2021, 43(4): 1069-1079. |
[8] | 符小卫, 陈子浩. 多无人机协同探测快速目标的控制方法设计[J]. 系统工程与电子技术, 2021, 43(11): 3295-3304. |
[9] | 钟晓芳, 兰红娟, 江文奇. 共识驱动的区间直觉模糊型多准则群体决策信息融合模型[J]. 系统工程与电子技术, 2020, 42(7): 1558-1566. |
[10] | 陶希闻, 江文奇. 基于调整成本的三阶段区间直觉模糊型多准则群体共识改进模型[J]. 系统工程与电子技术, 2020, 42(11): 2570-2580. |
[11] | 丁自然, 刘瑜, 曲建跃, 姜乔文, 简涛. 基于节点通信度的信息加权一致性滤波[J]. 系统工程与电子技术, 2020, 42(10): 2181-2188. |
[12] | 陈旿, 范铭楷, 李泽宏, 金鑫, 洪亮. 蜂群无人机系统的网络鲁棒性设计[J]. 系统工程与电子技术, 2019, 41(11): 2633-2640. |
[13] | 张杰勇, 何宜超, 孙昱, 钟赟, 焦志强. 网络信息体系联动的影响因素重要性等级评估方法[J]. 系统工程与电子技术, 2019, 41(10): 2287-2292. |
[14] | 高杨, 李东生. 变权区间数Heronian算子下集群态势觉察一致性评估[J]. 系统工程与电子技术, 2019, 41(1): 89-95. |
[15] | 刘瑜, 刘俊, 徐从安, 王聪, 齐林, 丁自然. 非均匀拓扑网络中的分布式一致性状态估计算法[J]. 系统工程与电子技术, 2018, 40(9): 1917-1925. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||