系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (7): 1904-1911.doi: 10.12305/j.issn.1001-506X.2021.07.22
徐扬1, 韩明仁2, 邵将3,4, 罗德林5,*
收稿日期:
2020-09-21
出版日期:
2021-06-30
发布日期:
2021-07-08
通讯作者:
罗德林
作者简介:
徐扬(1987—), 男, 副教授, 博士, 主要研究方向为多智能体协同控制、路径规划和生成|韩明仁(1996—), 男, 硕士研究生, 主要研究方向为航天器控制|邵将(1993—), 男, 博士研究生, 主要研究方向为巨型异构星座保持与重构|罗德林(1968—), 男, 教授, 博士, 主要研究方向为飞行器制导与控制、无人机协同决策与控制、计算智能
基金资助:
Yang XU1, Mingren HAN2, Jiang SHAO3,4, Delin LUO5,*
Received:
2020-09-21
Online:
2021-06-30
Published:
2021-07-08
Contact:
Delin LUO
摘要:
小型卫星集群协同控制是当前空间技术发展的热点之一, 卫星集群控制可归结为多智能体控制问题。面向卫星集群系统的分组姿态控制, 引入一致性以及对抗一致性问题, 提出了卫星系统姿态对抗一致性控制方法。卫星组网系统姿态对抗一致性控制目标是使卫星分组达到姿态对称的状态。以无向图描述姿态对抗卫星集群的通讯拓扑结构, 利用修正型罗德里格斯参数方法描述卫星刚体运动姿态, 设计了一种基于多智能体协同控制理论的三维空间卫星集群姿态对抗一致性控制律, 并采用Lyapunov稳定性理论证明了其稳定性。最后, 通过仿真实验验证了所提方法的有效性。
中图分类号:
徐扬, 韩明仁, 邵将, 罗德林. 基于MRPs的卫星集群系统姿态对抗一致性控制[J]. 系统工程与电子技术, 2021, 43(7): 1904-1911.
Yang XU, Mingren HAN, Jiang SHAO, Delin LUO. Attitude antagonistic consensus control of satellite swarm system based on MRPs[J]. Systems Engineering and Electronics, 2021, 43(7): 1904-1911.
1 |
SANDAU R . Status and trends of small satellite missions for earth observation[J]. Acta Astronautica, 2010, 66 (1-2): 1- 12.
doi: 10.1016/j.actaastro.2009.06.008 |
2 | KAPLAN M, BOONE B, BROWN R, et al. Engineering issues for all major modes of in situ space debris capture[C]//Proc. of the AIAA Space Conference & Exposition, 2010. |
3 | BELVIN W K, DOGGETT W R, WATSON J J, et al. In-space structural assembly: applications and technology[C]//Proc. of the AIAA Spacecraft Structures Conference, 2016. |
4 |
FALCONI R , SABATTINI L , SECCHI C , et al. Edge-weighted consensus-based formation control strategy with collision avoidance[J]. Robotica, 2015, 33 (2): 332- 347.
doi: 10.1017/S0263574714000368 |
5 |
CHENG Y Y , JIA R T , DU H B , et al. Robust finite-time consensus formation control for multiple nonholonomic wheeled mobile robots via output feedback[J]. International Journal of Robust and Nonlinear Control, 2018, 28 (6): 2082- 2096.
doi: 10.1002/rnc.4002 |
6 | ALTAFINI C. Achieving consensus on networks with antagonistic interactions[C]//Proc. of the IEEE Conference on Decision and Control, 2012: 853-858. |
7 |
LU W T , DAI M X , XUE F Z . Antagonistic formation motion of cooperative agents[J]. Chinese Physics B, 2015, 24 (2): 020504.
doi: 10.1088/1674-1056/24/2/020504 |
8 | 卢婉婷. 多智能体系统多部分对抗一致性[D]. 重庆: 重庆大学, 2017. |
LU W T. Multiple-group antagonistic consensus of multi-agent systems[D]. Chongqing: Chongqing University, 2017. | |
9 | LI C J , CHEN L M , GUO Y N , et al. Formation-containment control for networked Euler-Lagrange systems with input saturation[J]. Nonlinear Dynamics, 2017, 91 (2): 1307- 1320. |
10 |
MEI J , REN W , MA G F . Distributed coordinated tracking with a dynamic leader for multiple Euler-Lagrange systems[J]. IEEE Trans.on Automatic Control, 2011, 56 (6): 1415- 1421.
doi: 10.1109/TAC.2011.2109437 |
11 |
REN W . Distributed cooperative attitude synchronization and tracking for multiple rigid bodies[J]. IEEE Trans.on Control Systems Technology, 2010, 18 (2): 383- 392.
doi: 10.1109/TCST.2009.2016428 |
12 |
ABDESSAMEUD A , TAYEBI A . Attitude synchronization of a group of spacecraft without velocity measurements[J]. IEEE Trans.on Automatic Control, 2009, 54 (11): 2642- 2648.
doi: 10.1109/TAC.2009.2031567 |
13 |
陈志明, 刘海颖, 王惠南. 基于信息一致性的分布式卫星姿态同步研究[J]. 宇航学报, 2010, 31 (10): 2283- 2288.
doi: 10.3873/j.issn.1000-1328.2010.10.008 |
CHEN Z M , LIU H Y , WANG H N . Research on distributed satellite attitude synchronization based on information consensus[J]. Journal of Astronautics, 2010, 31 (10): 2283- 2288.
doi: 10.3873/j.issn.1000-1328.2010.10.008 |
|
14 |
SUN Y C , WANG W , MA G , et al. Backstepping-based distributed coordinated tracking for multiple uncertain Euler-Lagrange systems[J]. Journal of Systems Engineering and Electronics, 2016, 27 (5): 1083- 1095.
doi: 10.21629/JSEE.2016.05.16 |
15 | 梁晓龙, 刘流, 何吕龙, 等. 基于固定时间一致性的无人机集群构型变换[J]. 系统工程与电子技术, 2018, 40 (7): 1506- 1512. |
LIANG X L , LIU L , HE L L , et al. UAV swarm formation reconfiguration based on fixed-time consensus[J]. Systems Engineering and Electronics, 2018, 40 (7): 1506- 1512. | |
16 |
黄伟, 徐建城, 吴华兴, 等. 基于参数优化的导弹编队控制一致性算法[J]. 系统工程与电子技术, 2018, 40 (11): 2528- 2533.
doi: 10.3969/j.issn.1001-506X.2018.11.20 |
HUANG W , XU J C , WU H X , et al. Missile formation consensus control algorithm based on parameter optimization[J]. Systems Engineering and Electronics, 2018, 40 (11): 2528- 2533.
doi: 10.3969/j.issn.1001-506X.2018.11.20 |
|
17 |
WANG Q , ZHONG W M , XU J P , et al. Bipartite tracking consensus control of nonlinear high-order multi-agent systems subject to exogenous disturbances[J]. IEEE Access, 2019, 7, 145910- 145920.
doi: 10.1109/ACCESS.2019.2944759 |
18 |
ZHANG Y , LIU Y . Nonlinear second-order multi-agent systems subject to antagonistic interactions without velocity constraints[J]. Applied Mathematics and Computation, 2020, 364, 124667.
doi: 10.1016/j.amc.2019.124667 |
19 |
GUO W L , LUO W Q , ZHENG Z M . Lag group consensus for the second-order nonlinear multi-agent systems via adaptive control approach[J]. International Journal of Control, Automation and Systems, 2019, 17 (8): 1971- 1977.
doi: 10.1007/s12555-018-0734-1 |
20 |
HAO L L , ZHAN X S , WU J , et al. Fixed-time group consensus of nonlinear multi-agent systems via pinning control[J]. International Journal of Control, Automation and Systems, 2020, 19 (6): 200- 208.
doi: 10.1007/s12555-019-1005-5 |
21 |
ZANG J P , CHEN X , HAO F . Observer-based event-triggered bipartite consensus of linear multi-agent systems[J]. International Journal of Control, Automation and Systems, 2021, 19 (5): 1291- 1301.
doi: 10.1007/s12555-019-1072-7 |
22 |
XIE D M , SHI L , JIANG F C . Second-order group consensus for linear multi-agent systems with average dwell time switching[J]. Transactions of the Institute of Measurement and Control, 2019, 41 (2): 484- 493.
doi: 10.1177/0142331218755432 |
23 | YU J M, TENG D K. Weighted group consensus analysis of multi-agent networks with different time delays[C]//Proc. of the IEEE Chinese Control and Decision Conference, 2019: 2401-2406. |
24 | GUO X, LIANG J L, LIANG S, et al. Pinning control for asymmetric bipartite consensus of antagonistic multi-agent networks with delays[C]//Proc. of the IEEE 10th International Conference on Information Science and Technology, 2020: 7-12. |
25 |
PU X C , REN L , LIU Y , et al. Group consensus of multi-agent systems with cooperative-competitive interaction and communication delay in switching topologies networks based on the delta operator method[J]. Neurocomputing, 2020, 390, 57- 68.
doi: 10.1016/j.neucom.2020.01.076 |
26 |
LIU H , TIAN Y , LEWIS F L . Robust trajectory tracking in satellite time-varying formation flying[J]. IEEE Trans.on Cybernetics, 2020,
doi: 10.1109/TCYB.2019.2960363 |
27 |
WU H , AN B R , LI B . Distributed consensus control protocols for heterogeneous multi-agent systems with time-varying topologies[J]. IEEE Access, 2020, 8, 152772- 152779.
doi: 10.1109/ACCESS.2020.3017291 |
28 |
FANG M Y , ZHOU C C , HUANG X , et al. Couple-group consensus of stochastic multi-agent systems with fixed and Markovian switching communication topologies[J]. Chinese Physics B, 2019, 28 (1): 010703.
doi: 10.1088/1674-1056/28/1/010703 |
29 |
LIU M , FENG Y Z . Group consensus of mixed-order multi-agent systems with fixed and directed interactive topology[J]. IEEE Access, 2019, 7, 179712- 179719.
doi: 10.1109/ACCESS.2019.2958794 |
30 |
SUN Y S , JI Z J , QI Q Y , et al. Bipartite consensus of multi-agent systems with intermittent interaction[J]. IEEE Access, 2019, 7, 130300- 130311.
doi: 10.1109/ACCESS.2019.2940541 |
31 | LIAN D H, WEN G G, PENG Z X. Distributed group consensus of a class of networked heterogeneous multi-agent system[C]//Proc. of the IEEE Chinese Control Conference, 2019: 5445-5450. |
32 |
HUANG J , WEN G G , PENG Z X , et al. Group-consensus with reference states for heterogeneous multi-agent systems via pinning control[J]. International Journal of Control, Automation and Systems, 2019, 17 (5): 1096- 1106.
doi: 10.1007/s12555-017-0706-x |
33 |
HU A H , PARK J H , CAO J D . Group consensus of multi-agent networks with hybrid interactions[J]. Neurocomputing, 2020, 404, 267- 275.
doi: 10.1016/j.neucom.2020.04.112 |
34 |
WU J , DENG Q , CHEN C Y , et al. Bipartite consensus for second order multi-agent systems with exogenous disturbance via pinning control[J]. IEEE Access, 2019, 7, 186563- 186571.
doi: 10.1109/ACCESS.2019.2959719 |
35 |
DENG Q , WU J , HAN T , et al. Fixed-time bipartite consensus of multi-agent systems with disturbances[J]. Physica A: Statistical Mechanics and its Applications, 2019, 516, 37- 49.
doi: 10.1016/j.physa.2018.09.066 |
36 |
GAO H Y , HU A H , SHEN W Q , et al. Group consensus of multi-agent systems subjected to cyber-attacks[J]. Chinese Physics B, 2019, 28 (6): 060501.
doi: 10.1088/1674-1056/28/6/060501 |
37 | SHUSTER M D . A survey of attitude representations[J]. Journal of the Astronautical Sciences, 1993, 41 (4): 439- 517. |
38 | ZHAO K , SONG Y D , MA T D , et al. Prescribed performance control of uncertain Euler-Lagrange systems subject to full-state con-straints[J]. IEEE Trans.on Neural Networks and Learning Systems, 2017, 29 (8): 3478- 3489. |
39 | LU W T, SONG Y. Multiple-group antagonistic consensus control of seconder-order agents[C]//Proc. of the IEEE International Conference on Control, Automation, Robotics and Vision, 2016. |
40 | BO J N. Classical element feedback control for spacecraft orbital maneuvers[D]. USA: the Virginia Polytechnic Institute and State University, 2002. |
41 | STEVEN P H. Formation flying performance measures for Earth-pointing missions[D]. USA: the Virginia Polytechnic Institute and State University, 1999. |
42 |
MORI O , MATUNAGA S . Formation and attitude control for rotational tethered satellite clusters[J]. Journal of Spacecraft and Rockets, 2007, 44 (1): 211- 220.
doi: 10.2514/1.14910 |
43 |
REN W , BEARD R W , ATKINS E M . Information consensus in multivehicle cooperative control[J]. IEEE Control Systems Magazine, 2007, 27 (2): 71- 82.
doi: 10.1109/MCS.2007.338264 |
44 | MENG Z T, REN W, YOU Z. Decentralized cooperative attitude tracking using modified Rodriguez parameters[C]//Proc. of the IEEE Conference on Decision and Control, 2009: 853-858. |
45 | 黄圳圭. 航天器姿态动力学[M]. 长沙: 国防科技大学出版社, 1997: 30- 70. |
HUANG Z G . Spacecraft attitude dynamics[M]. Changsha: National University of Defense Technology Press, 1997: 30- 70. | |
46 | 徐磊. 航天器姿态轨道控制仿真系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2009. |
XU L. Research on simulation system of spacecraft attitude and orbit control[D]. Harbin: Harbin Institute of Technology, 2009. |
[1] | 王双双, 李春涛, 王震, 苏子康, 戴飞. 基于自适应动态逆的着舰控制器设计[J]. 系统工程与电子技术, 2022, 44(1): 218-225. |
[2] | 张毅, 方国伟, 杨秀霞. 具有性能预设的多机编队目标跟踪控制[J]. 系统工程与电子技术, 2021, 43(4): 1069-1079. |
[3] | 李宗星, 张锐. 基于Riccati方程的导弹自适应姿态控制[J]. 系统工程与电子技术, 2020, 42(6): 1358-1365. |
[4] | 舒适, 房建成, 张伟, 刘刚, 钱勇, 张健, 崔培玲. 基于MSCMG的复合补偿控制提高图像配准方法[J]. 系统工程与电子技术, 2019, 41(12): 2827-2834. |
[5] | 贾庆贤, 张承玺, 李化义, 张迎春. 基于新型学习观测器的卫星执行机构故障重构[J]. 系统工程与电子技术, 2019, 41(12): 2835-2841. |
[6] | 董朝阳, 马鸣宇, 王青, 周敏. 含有通信时滞的多航天器SO(3)姿态协同控制[J]. 系统工程与电子技术, 2018, 40(9): 2032-2039. |
[7] | 陆峥, 金光, 杨天社, 吴冠, 兰新章. 基于可重构度的在轨卫星多级健康评估方法[J]. 系统工程与电子技术, 2018, 40(8): 1769-1776. |
[8] | 陆正亮, 张翔, 于永军, 莫乾坤, 廖文和. 立方体卫星质量矩姿态控制建模与布局优化[J]. 系统工程与电子技术, 2017, 39(3): 599-605. |
[9] | 王平, 王华, 任元. 基于磁悬浮转子微框架能力的航天器姿态二自由度测控一体化控制方法[J]. 系统工程与电子技术, 2016, 38(7): 1614-1622. |
[10] | 周成宝, 周荻. 面向摆动喷管的导弹非线性姿态控制[J]. 系统工程与电子技术, 2016, 38(5): 1107-. |
[11] | 殷春武, 侯明善, 李明翔. 姿态稳定控制器择优评价体系构建[J]. 系统工程与电子技术, 2016, 38(1): 130-135. |
[12] | 程昊宇, 董朝阳, 王青. 运载火箭的抗干扰分数阶控制器设计[J]. 系统工程与电子技术, 2015, 37(9): 2109-2114. |
[13] | 李冬柏, 陈雪芹, 李诚良. 基于偏差分离原理的卫星执行机构故障诊断[J]. 系统工程与电子技术, 2015, 37(3): 606-612. |
[14] | 周荻, 周成宝. 基于开关执行器的空间飞行器大角度姿态控制[J]. 系统工程与电子技术, 2014, 36(9): 1792-1797. |
[15] | 李鑫1, 刘莹莹1, 李赣华2, 刘睿1, 周军1. 基于模糊变权原理的卫星健康评估方法[J]. 系统工程与电子技术, 2014, 36(3): 476-480. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||