系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (8): 2154-2162.doi: 10.12305/j.issn.1001-506X.2021.08.17
曾广迅, 龚光红*, 李妮
收稿日期:
2020-09-20
出版日期:
2021-08-01
发布日期:
2021-08-05
通讯作者:
龚光红
作者简介:
曾广迅(1996—), 男, 硕士研究生, 主要研究方向为计算机兵力生成、体系建模|龚光红(1968—), 女, 教授, 博士, 主要研究方向为计算机兵力生成、体系建模|李妮(1980—), 女, 教授, 博士, 主要研究方向为计算机兵力生成、体系建模
基金资助:
Guangxun ZENG, Guanghong GONG*, Ni LI
Received:
2020-09-20
Online:
2021-08-01
Published:
2021-08-05
Contact:
Guanghong GONG
摘要:
针对传统的想定建模方法耗时长、成本高的问题,为了实现作战体系概念模型数据到仿真想定的数据映射重用, 提出一种基于语义匹配的作战体系仿真想定生成方法。首先,基于网络爬虫技术获取武器装备的参数信息, 构建了作战领域知识库。在此基础上, 提出了新型的混合式语义匹配方法以提供仿真想定的数据来源, 根据自然语言数据库WordNet开展调参实验确定算法参数, 通过对比人工打分结果有效提高了算法的可信性。在确定了概念模型与仿真想定的数据映射关系后, 给出了仿真想定的生成方法。最后, 通过编队突防仿真应用案例, 验证了该方法的可行性。
中图分类号:
曾广迅, 龚光红, 李妮. 基于语义匹配的作战体系仿真想定生成方法[J]. 系统工程与电子技术, 2021, 43(8): 2154-2162.
Guangxun ZENG, Guanghong GONG, Ni LI. Combat system-of-systems simulation scenario generation approach based on semantic matching[J]. Systems Engineering and Electronics, 2021, 43(8): 2154-2162.
表3
编队突防体系的语义匹配结果"
源武器装备 | 目标武器装备 | 相似度 | 阵营 |
001舰 | Carrier | 1.000 | 红方 |
052B | 052C | 0.869 | 红方 |
052C | 052C | 1.000 | 红方 |
J-20 | J-10 | 0.839 | 红方 |
KJ-2000 | KJ-2000 | 1.000 | 红方 |
红方机场指挥所 | 红方机场指挥所 | 1.000 | 红方 |
空军机场 | 空军机场 | 1.000 | 红方 |
JH-7C | JH-7G | 0.800 | 红方 |
J-15 | Su-30 | 0.867 | 红方 |
F-16 | F-16 | 1.000 | 蓝方 |
F-22 | F-16 | 0.829 | 蓝方 |
伯克级驱逐舰 | 基隆级驱逐舰 | 0.866 | 蓝方 |
高波级驱逐舰 | 基隆级驱逐舰 | 0.834 | 蓝方 |
蓝方机场指挥所 | 蓝方机场指挥所 | 1.000 | 蓝方 |
空军机场 | 空军机场 | 1.000 | 蓝方 |
E-2T | E-2T | 1.000 | 蓝方 |
1 | THACKER S , PANT R , HALL J W . System-of-systems formulation and disruption analysis for multi-scale critical national infrastructures[J]. Reliability Engineering & System Safety, 2017, 167, 30- 41. |
2 | YANG W J, YUAN C X, ZHAO J, et al. Research on weapon and equipment requirement analysis method based on DODAF[C]//Proc. of the International Conference on Virtual Reality and Intelligent Systems, 2019. |
3 | Chen Z W, ZHAO T D, JIAO J, et al. System of systems architecture modeling and mission reliability analysis based on DoDAF and petri net[C]//Proc. of the Annual Reliability and Maintainability Symposium, 2019. |
4 | MA X Y, WANG T, GUAN X, et al. Design of Optical mea-surement simulation training system in shooting range based on DoDAF[C]//Proc. of the International conference on Big Data Analytics for Cyber-Physical-Systems, 2020. |
5 | 戴伟, 丁禹. 国防科技创新体系架构框架初探[J]. 科学管理研究, 2020, 38 (4): 24- 30. |
DAI W , DING Y , et al. The initial exploration of national defense science and technology innovation architecture framework[J]. Scientific Management Research, 2020, 38 (4): 24- 30. | |
6 | HAUSE M. The unified profile for DoDAF/MODAF (UPDM) enabling systems of systems on many levels[C]//Proc. of the IEEE International Systems Conference, 2010. |
7 | BAILEY I. Brief introduction to MODAF with v1.2 updates[C]//Proc. of the IET Seminar on Enterprise Architecture Frameworks, 2008. |
8 |
WANG J , ZHAO X Z , XU B P , et al. Immune multi-agent model using vaccine for cooperative air-defense system of systems for surface warship formation based on danger theory[J]. Journal of Systems Engineering and Electronics, 2013, 24 (6): 946- 953.
doi: 10.1109/JSEE.2013.00111 |
9 |
WANG T , ZHOU X , WANG W P , et al. An optimal searching algorithm for the equipment system-of-systems architecture space with uncertain capabilities[J]. IEEE Access, 2020, 8, 125130- 125139.
doi: 10.1109/ACCESS.2020.3007542 |
10 | WANG Y Q, GAO J, FANG L, et al. Research on distributed collaborative fire distribution technology based on multi-agent[C]//Proc. of the 3rd International Conference on Unmanned Systems, 2020. |
11 | LI F, LIAO L J, LI C Y, et al. Efficient and density adaptive edge weight model for measuring semantic similarity[C]//Proc. of the 4th International Conference on Communication and Information Processing, 2018. |
12 | JIANG W M, LIN Y M, LI Y. Concept alignment of product taxonomies based on semantic similarity[C]//Proc. of the IEEE 3rd International Conference on Cloud Computing and Big Data Analysis, 2018. |
13 | 朱新华, 马润聪, 孙柳, 等. 基于知网与词林的词语语义相似度计算[J]. 中文信息学报, 2016, 30 (4): 29- 36. |
ZHU X H , MA R C , SUN L , et al. Word semantic similarity computation based on hownet and cilin[J]. Journal of Chinese Information Processing, 2016, 30 (4): 29- 36. | |
14 | 方文婷. 通信领域本体的语义检索系统研究[D]. 南昌: 江西师范大学, 2015. |
FANG W T. Research on semantic retrieval for communication ontology[D]. Nanchang: Jiangxi Normal University, 2015. | |
15 |
CAI Y Y , ZHANG Q C , LU W , et al. A hybrid approach for measuring semantic similarity based on IC-weighted path distance in WordNet[J]. Journal of Intelligent Information Systems, 2018, 51 (1): 23- 47.
doi: 10.1007/s10844-017-0479-y |
16 | SECO N, VEALE T, HAYES J. An intrinsic information content metric for semantic similarity in wordNet[C]//Proc. of the European Artificial Intelligence, 2004. |
17 | MENG L L , GU J Z , ZHOU Z L . A new model of information content based on concept's topology for measuring semantic similarity in WordNet[J]. International Journal of Grid and Distributed Computing, 2012, 5 (3): 81- 94. |
18 |
BATET M , HARISPE S , RANWEZ S , et al. An information theoretic approach to improve semantic similarity assessments across multiple ontologies[J]. Information Sciences, 2014, 283, 197- 210.
doi: 10.1016/j.ins.2014.06.039 |
19 |
SÁNCHEZ D , BATET M , ISERN D , et al. Ontology-based semantic similarity: a new feature-based approach[J]. Expert Systems with Applications, 2012, 39 (9): 7718- 7728.
doi: 10.1016/j.eswa.2012.01.082 |
20 | JIANG Y C , ZHANG X P , TANG Y , et al. Feature-based approaches to semantic similarity assessment of concepts using Wikipedia[J]. Information Processing & Management, 2015, 51 (3): 215- 234. |
21 |
SAIF A , ZAINODIN U Z , OMAR N , et al. Weighting-based semantic similarity measure based on topological parameters in semantic taxonomy[J]. Natural Language Engineering, 2018, 24 (6): 861- 886.
doi: 10.1017/S1351324918000190 |
22 |
LIKAVEC S , LOMBARDI I , CENA F . Sigmoid similarity-a new feature-based similarity measure[J]. Information Sciences, 2019, 481, 203- 218.
doi: 10.1016/j.ins.2018.12.018 |
23 | YANG C Q, ZHU Y Y, ZHONG M, et al. Semantic similarity computation in knowledge graphs: comparisons and improvements[C]//Proc. of the IEEE 35th International Conference on Data Engineering Workshops, 2019. |
24 | BARROS M, MOITINHO A, COUTO F M. Hybrid semantic recommender system for chemical compounds[C]//Proc. of the European Conference on Information Retrieval, 2020. |
25 |
李蕾, 杨丽花. 基于知网的词语语义相似度改进算法[J]. 计算机技术与发展, 2019, 29 (4): 42- 46.
doi: 10.3969/j.issn.1673-629X.2019.04.009 |
LI L , YANG L H . Improved algorithm of word semantic simailarity based on howNet[J]. Computer Technology and Development, 2019, 29 (4): 42- 46.
doi: 10.3969/j.issn.1673-629X.2019.04.009 |
|
26 | PRIYA M , CH A K . A novel method for merging academic social network ontologies using formal concept analysis and hybrid semantic similarity measure[J]. Library Hi Tech, 2020, 38 (2): 399- 419. |
27 | LEACOCK C , CHODOROW M . Combining local context and WordNet similarity for word sense identification[J]. WordNet: an Electronic Lexical Database, 1998, 49 (2): 265- 283. |
28 | WU Z B, PALMER M. Verbs semantics and lexical selection[C]//Proc. of the 32nd Annual Meeting on Association for Computational Linguistics, 1994. |
29 |
RADA R , MILI H , BICKNELL E , et al. Development and application of a metric on semantic nets[J]. IEEE Trans.on Systems, Man, and Cybernetics, 1989, 19 (1): 17- 30.
doi: 10.1109/21.24528 |
30 |
LI Y , BANDAR Z A , MCLEAN D . An approach for measuring semantic similarity between words using multiple information sources[J]. IEEE Trans.on Knowledge and Data Engineering, 2003, 15 (4): 871- 882.
doi: 10.1109/TKDE.2003.1209005 |
31 | GAO J B , ZHANG B W , CHEN X H . A WordNet-based semantic similarity measurement combining edge-counting and information content theory[J]. Engineering Applications of Artificial Intelligence, 2015, 39, 80- 88. |
32 | WITTMAN J R L. Defining a standard: the military scenario definition language version 1.0 standard[C]//Proc. of the Spring Simulation Multiconference, 2009. |
33 | ZHAO X Y, XING Z, YANG M, et al. Structure and content enhancement to military scenario definition language[C]//Proc. of the IEEE Symposium on Robotics and Applications, 2012. |
[1] | 张伟, 何晶, 谢晓伟, 赵国强, 陈真. 联合战场导航对抗仿真评估系统设计与实现[J]. 系统工程与电子技术, 2022, 44(10): 3182-3189. |
[2] | 马骏, 杨镜宇, 吴曦. 基于预聚类主动半监督的作战体系效能评估[J]. 系统工程与电子技术, 2022, 44(6): 1889-1896. |
[3] | 任璐英, 王庆国, 马倩, 张海峰, 徐卫卫. 基于元模型的复杂产品虚拟样机建模方法研究[J]. 系统工程与电子技术, 2022, 44(5): 1609-1614. |
[4] | 张源原, 高阳, 朱鹏, 刘锦涛, 谷树山. 基于着色Petri网的无人机侦察战术规划[J]. 系统工程与电子技术, 2022, 44(3): 900-907. |
[5] | 鲁统亮, 陈文豪, 葛冰峰, 邓祁零. 信息支援下的作战体系多层网络建模[J]. 系统工程与电子技术, 2022, 44(2): 520-528. |
[6] | 冯克涛, 李晓毅, 曲晨, 王申涛, 陈谋. 基于DEM的民航地空VHF通信有效覆盖仿真研究[J]. 系统工程与电子技术, 2022, 44(2): 684-695. |
[7] | 马骏, 杨镜宇, 邹立岩. 基于Stacking集成元模型的作战体系能力图谱生成方法[J]. 系统工程与电子技术, 2022, 44(1): 154-163. |
[8] | 刘紫燕, 马珊珊, 梁静, 朱明成, 袁磊. 注意力机制CNN的毫米波大规模MIMO系统信道估计算法[J]. 系统工程与电子技术, 2022, 44(1): 307-312. |
[9] | 谢春思, 刘志赢, 桑雨. 基于特征匹配的舰载对陆导弹目标识别模型[J]. 系统工程与电子技术, 2021, 43(8): 2244-2253. |
[10] | 雷永林, 王言, 于芹章, 朱智, 董微, 朱一凡. 面向复杂仿真元建模的序贯近邻探索实验设计方法[J]. 系统工程与电子技术, 2021, 43(5): 1232-1239. |
[11] | 陈国卫, 周雨菁, 任蕾. 面向系统性能最大化的装备经费结构SD优化[J]. 系统工程与电子技术, 2021, 43(4): 1022-1029. |
[12] | 高泽海, 马存宝, 牛浩田. 综合模块化航电系统性能退化Lévy模型[J]. 系统工程与电子技术, 2021, 43(4): 1144-1152. |
[13] | 刘志赢, 谢春思, 李进军, 桑雨. 基于改进Deeplabv3+的烟雾区域分割识别算法[J]. 系统工程与电子技术, 2021, 43(2): 328-335. |
[14] | 田相轩, 石志强. 基于改进型生成对抗网络的指挥信息系统模拟数据生成算法[J]. 系统工程与电子技术, 2021, 43(1): 163-170. |
[15] | 王飞, 司光亚, 贺宗平, 王强. 对抗势能的原理及计算方法[J]. 系统工程与电子技术, 2020, 42(12): 2771-2778. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||