Systems Engineering and Electronics ›› 2023, Vol. 46 ›› Issue (1): 205-218.doi: 10.12305/j.issn.1001-506X.2024.01.24
• Systems Engineering • Previous Articles
Peng WANG1,2, Shuting YUE2, Fan ZHANG1,2,*, Lei DONG1,2
Received:
2022-07-19
Online:
2023-12-28
Published:
2024-01-11
Contact:
Fan ZHANG
CLC Number:
Peng WANG, Shuting YUE, Fan ZHANG, Lei DONG. Requirement consistency checking method for civil aircraft systems based on finite predicate tracing[J]. Systems Engineering and Electronics, 2023, 46(1): 205-218.
Table 1
Functional requirements of "flight information symbol generation and display" (partial)"
需求类型 | 需求编号 | 需求描述 |
内部功能需求 | 01 | HUD系统在主画面模式下, 显示姿态、航向、高度、空速、航迹与飞行模式通告等符号信息 |
02 | HUD系统通告飞行模式信息时, 显示包括自动飞行模式通告、自动油门模式通告、飞行指引仪模式通告信息 | |
03 | HUD系统通告飞行模式信息时, 显示包括自动飞行模式通告、自动油门模式通告、飞行指引仪水平模式通告、飞行指引仪垂直模式通告信息 | |
04 | HUD系统显示的自动飞行模式通告符号信息发生改变时, 系统的即时模式与预期模式相应作出改变 | |
05 | HUD系统显示的自动飞行模式通告符号信息可显示3个模式通告: ① 飞行指示仪开启且任一自动驾驶仪未激活; ② 任一自动监视仪接通; ③ 航向道截获且单通道接通(SINGLE CH) | |
06 | 即时模式与预期模式都属于[1, 5]范围内的整数 | |
07 | 如果自动飞行系统模式通告FMA_FD符号闪烁显示, 那么DesiredMODE=CurrentMODE+1 | |
⋮ | ⋮ | |
交互功能需求 | 01 | HUDC通过处理传感器数据并生成图形及符号数据, 通过HPU的数据传输与投影, 使HCU组合仪显示飞行信息符号给飞行员 |
02 | HUDC应只允许设备方管理定义显示在HCU上的飞行信息符号 | |
03 | HUDC应提供可自定义的HCU符号可见性策略 | |
04 | 如果HUDC接收的飞行模式数据发生改变, HUD系统应显示特定的飞行模式通告 | |
05 | 如果HUDC接收的飞行模式数据发生改变时, HUD系统应显示特定的自动飞行模式通告、自动油门模式通告、飞行指引仪模式通告信息 | |
06 | 如果HUDC数据接口传输特定的数据时, HUD系统应显示相应的自动飞行模式通告符号 | |
07 | 如果id_FDA=1(FD指示接通)且|id_ComA-id_ComB|=nill(Com指示不接通), 自动飞行系统模式通告显示为FMA_FD | |
08 | 如果id_ComA与id_ComB的差值大于等于5时(Com指令位在右侧), 自动飞行系统模式通告显示“CMD” | |
09 | 如果id_ComA与id_ComB的差值小于等于5时(Com指令位在左侧), 自动飞行系统模式通告显示“SINGE CH” | |
⋮ | ⋮ |
Table 2
Results of "flight information symbol display and generation function" requirement consistency check"
案例名称 | 一致性检查类型 | 检查数量 | 冲突数据 | ||
冲突类型 | 数量 | 反例生成 | |||
HUD系统“飞行信息符号生成与显示”功能需求 | 需求自冲突检查 | 16 | 存在监控变量及其可行值, 但不存在相应受控变量 | 2 | 2 |
存在监控变量及其可行值、相应受控变量, 但该受控变量不存在可行值 | 2 | 3 | |||
需求集冲突检查 | 16 | 存在监控变量但不存在该监控变量可行值 | 2 | 2 | |
存在一个监控变量及其可行值对应多个监控变量及可行值 | 2 | 3 | |||
存在多个监控变量及其可行值同时成立时无相应受控变量及可行值 | 3 | 3 | |||
需求关系一致性检查 | 14 | 全等与蕴含矛盾 | 1 | 1 | |
整体与局部矛盾 | 1 | 1 |
1 |
XU W J , MA D F . A framework for model and verification of safety-critical operating system based on ARINC653[J]. Electronics, 2021, 10 (16): 1934.
doi: 10.3390/electronics10161934 |
2 |
GUO X , LIU Y , ZHAO W , et al. Supporting resilient conceptual design using functional decomposition and conflict resolution[J]. Advanced Engineering Informatics, 2021, 48, 101262.
doi: 10.1016/j.aei.2021.101262 |
3 | 廖万斌, 曹云峰, 王新尧. 面向复杂系统需求分析的DSL构建[J]. 系统工程与电子技术, 2022, 44 (11): 3443- 3454. |
LIAO W B , CAO Y F , WANG X Y , et al. DSL building for requirement analysis of complex system[J]. Systems Engineering and Electronics, 2022, 44 (11): 3443- 3454. | |
4 |
MOITRA A , SIU K , CRAPO A W , et al. Automating requirements analysis and test case generation[J]. Requirements Engineering, 2019, 24 (3): 341- 364.
doi: 10.1007/s00766-019-00316-x |
5 | WANG Y , LUO L K , LIU H . Bridging the semantic gap between customer needs and design specifications using user-generated content[J]. IEEE Trans.on Engineering Management, 2020, 64 (4): 1622- 1634. |
6 | LI M, MENG B L, YU H, et al. Requirements-based automated test generation for safety critical software[C]//Proc. of the IEEE/AIAA 38th Digital Avionics Systems Conference, 2019. |
7 | MAVIN A, WILKSINSON P, GREGORY S, et al. Listens learned (8 lessons learned applying EARS)[C]//Proc. of the IEEE 24th International Requirements Engineering Conference, 2016: 276-282. |
8 | FRIEDENTHAL S , MOORE A , STEINER R . A practical guide to SysML: the systems modeling language[M]. San Francisco: Morgan Kaufmann, 2014. |
9 |
FU C , LIU J H , WANG S D . Building SysML model graph to support the system model reuse[J]. IEEE Access, 2021, 9, 132374- 132389.
doi: 10.1109/ACCESS.2021.3115165 |
10 | OWL Working Group. OWL 2 Web ontology language document overview: W3C recommendation 27 October 2009[EB/OL]. [2022-07-01]. https://www.w3.org/TR/owl2-overview/. |
11 |
PENG G Z , WANG H W , ZHANG H M , et al. A hypernetwork-based approach to collaborative retrieval and reasoning of engineering design knowledge[J]. Advanced Engineering Informatics, 2019, 42, 100956.
doi: 10.1016/j.aei.2019.100956 |
12 | QIN F W, XU H R, ZHANG W C, et al. Voice of the customer oriented new product synthesis over knowledge graphs[C]//Proc. of the International Design Engineering Technical Confe-rences and Computers and Information in Engineering Confe-rence, 2018. |
13 | DAPOIGNY R, BARLATIER P. Specifying well-formed part-whole relations in COQ[C]//Proc. of the International Confe-rence on Conceptual Structures, 2014: 159-173. |
14 | TAIT W W . First-order logic without bound variables: compositional semantics[M]. Cham: Springer, 2014: 359- 384. |
15 | SEMERÁTH O , BARTA Á , HORVÁTH Á , et al. Formal validation of domain-specific languages with derived features and well-formedness constraints[J]. Software & Systems Mo-deling, 2017, 16 (2): 357- 392. |
16 |
LU J , OU C Y , LIAO C , et al. Formal modelling of a sheet metal smart manufacturing system by using Petri nets and first-order predicate logic[J]. Journal of Intelligent Manufacturing, 2021, 32 (4): 1043- 1063.
doi: 10.1007/s10845-020-01602-0 |
17 | LÚCIO L, RAHMAN S, CHENG C H, et al. Just formal enough? automated analysis of EARS requirements[C]//Proc. of the In NASA Formal Methods Symposium, 2017: 427-434. |
18 | 王庆龙, 王智学, 何红悦, 等. 基于模糊-云模型的C4ISR系统效能需求建模与分析方法[J]. 系统工程与电子技术, 2016, 38 (9): 2065- 2071. |
WANG Q L , WANG Z X , HE H Y , et al. Modeling and analysis method to C4ISR system for efficiency requirements based on fuzzy cloud model[J]. Systems Engineering and Electronics, 2016, 38 (9): 2065- 2071. | |
19 |
ATOUM I , BAKLIZI M , ALSMADI I , et al. Challenges of software requirements quality assurance and validation: a systematic literature review[J]. IEEE Access, 2021, 9, 137613- 137634.
doi: 10.1109/ACCESS.2021.3117989 |
20 | LIMA L , MIYAZAWA A , CAVALCANTI A , et al. An integrated semantics for reasoning about SysML design models using refinement[J]. Software & Systems Modeling, 2017, 16, 875- 902. |
21 | GOKNIL A , KURTEV I , VAN D B K , et al. Semantics of trace relations in requirements models for consistency checking and inferencing[J]. Software & Systems Modeling, 2011, 10 (1): 31- 54. |
22 |
ELFAKI A O . A rule-based approach to detect and prevent inconsistency in the domain-engineering process[J]. Expert Systems, 2016, 33 (1): 3- 13.
doi: 10.1111/exsy.12116 |
23 |
ZHANG J S , EL-GOHARY N M . Semantic-based logic representation and reasoning for automated regulatory compliance checking[J]. Journal of Computing in Civil Engineering, 2017, 31 (1): 04016037.
doi: 10.1061/(ASCE)CP.1943-5487.0000583 |
24 |
XUE X R , ZHANG J S . Regulatory information transformation ruleset expansion to support automated building code compliance checking[J]. Automation in Construction, 2022, 138, 104230.
doi: 10.1016/j.autcon.2022.104230 |
25 |
VIRIYASITAVAT W , XU L D , BI Z , et al. Extension of specification language for soundness and completeness of service workflow[J]. Enterprise Information Systems, 2018, 12 (5): 638- 657.
doi: 10.1080/17517575.2018.1432769 |
26 |
BHUSHAN M , GOEL S , KUMAR A . Improving quality of software product line by analysing inconsistencies in feature models using an ontological rule-based approach[J]. Expert Systems, 2018, 35 (3): e12256.
doi: 10.1111/exsy.12256 |
27 | KAUFMANN M, MOORE J S. An ACL2 tutorial[C]//Proc. of the International Conference on Theorem Proving in Higher Order Logics, 2008: 17-21. |
28 | ARP4754A. Guidelines for development of civil aircraft and systems[S]. Warrendale: SAE International, Warrendale, 2010. |
29 | 王文浩, 毕文豪, 张安, 等. 基于MBSE的民机系统功能建模方法[J]. 系统工程与电子技术, 2021, 43 (10): 2884- 2892. |
WANG W H , BI W H , ZHANG A , et al. Function modeling method of civil aircraft system based on MBSE[J]. Systems Engineering and Electronics, 2021, 43 (10): 2884- 2892. | |
30 |
RYBAKOV M , SHKATOV D . Algorithmic properties of first-order superintuitionistic logics of finite Kripke frames in restricted languages[J]. Journal of Logic and Computation, 2021, 31 (2): 494- 522.
doi: 10.1093/logcom/exaa091 |
31 | MANOLIOS P. Scalable methods for analyzing formalized requirements and localizing errors[P]. U.S. : Patent 9639450, 2017-05-02. |
32 | 赵长啸, 李浩, 董磊, 等. 基于STPA-Bayes模型的机载平视显示系统安全性分析与评价[J]. 系统工程与电子技术, 2020, 42 (5): 1083- 1092. |
ZHAO C X , LI H , DONG L , et al. Safety analysis and evaluation of airborne HUD system based on STPA-Bayes model[J]. Systems Engineering and Electronics, 2020, 42 (5): 1083- 1092. |
[1] | Huayou WANG, Chengcheng ZHANG, Haihong XUE, Yifei LIU. Prediction of the number of accident symptoms in civil aviation based on "regression+Markov" combined model [J]. Systems Engineering and Electronics, 2023, 45(7): 2114-2120. |
[2] | Xinze LI, Wenya ZHOU, Kai LIU, Bo WANG. Screening method for the optimal landing site in the reachable area [J]. Systems Engineering and Electronics, 2023, 45(6): 1712-1721. |
[3] | Wei HAN, Zixuan LIU, Xichao SU, Kaikai CUI, Jie LIU. Deck path planning algorithm of carrier-based aircraft based on heuristic and optimal control [J]. Systems Engineering and Electronics, 2023, 45(4): 1098-1110. |
[4] | Junsen LI, Yining FANG, Yun'an ZHANG, Guanghan BAI, Junyong TAO. Multi-agent modeling and evaluation method for mission-oriented equipment support SoS [J]. Systems Engineering and Electronics, 2023, 45(1): 279-290. |
[5] | Wenqing SHI, Haifeng WANG, Haixin CHEN. Fighter-drone teaming system requirements elicitation and verification [J]. Systems Engineering and Electronics, 2023, 45(1): 108-118. |
[6] | Peng WANG, Zijing SUN, Fan ZHANG, Guosong XIAO. Reliability analysis model for phased-mission system considering probabilistic common cause failures [J]. Systems Engineering and Electronics, 2022, 44(12): 3887-3898. |
[7] | Yaohua LI, Yuan GAO. Safety analysis for civil aircraft system based on STPA-ANP model [J]. Systems Engineering and Electronics, 2022, 44(9): 2986-2994. |
[8] | Feiran GUO, Jianqiao YU, Bao SONG. Optimal design of missile types in missile equipment system based on assignment model [J]. Systems Engineering and Electronics, 2022, 44(3): 850-862. |
[9] | Qiucen FAN, Wenhao BI, An ZHANG, Wenhao WANG. MBSE modeling method of civil aircraft altitude control system [J]. Systems Engineering and Electronics, 2022, 44(1): 164-171. |
[10] | Yunong WANG, Wenhao BI, An ZHANG, Chao ZHAN. DoDAF-based civil aircraft MBSE development method [J]. Systems Engineering and Electronics, 2021, 43(12): 3579-3585. |
[11] | Yuhang KE, Yanjun LI, Yuyuan CAO, Xingcheng ZHANG. Research on model-based safety analysis of flight control system [J]. Systems Engineering and Electronics, 2021, 43(11): 3259-3265. |
[12] | Wenwen KANG, Haomin LI. Multi-view representation method of aircraft system architecture based on model [J]. Systems Engineering and Electronics, 2021, 43(11): 3266-3277. |
[13] | Wenhao WANG, Wenhao BI, An ZHANG, Qiucen FAN. Function modeling method of civil aircraft system based on MBSE [J]. Systems Engineering and Electronics, 2021, 43(10): 2884-2892. |
[14] | Delin LI, Wenhao BI, An ZHANG, Qiucen FAN. MBSE-based process management in the development of civil aircraft [J]. Systems Engineering and Electronics, 2021, 43(8): 2209-2220. |
[15] | Gaowei JIA, Jianfeng WANG. Research review of UAV swarm mission planning method [J]. Systems Engineering and Electronics, 2021, 43(1): 99-111. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||