Systems Engineering and Electronics ›› 2023, Vol. 46 ›› Issue (1): 190-195.doi: 10.12305/j.issn.1001-506X.2024.01.22
• Systems Engineering • Previous Articles
Meifeng LIU, Wenjing YANG
Received:
2022-03-09
Online:
2023-12-28
Published:
2024-01-11
Contact:
Wenjing YANG
CLC Number:
Meifeng LIU, Wenjing YANG. Consistency verification of contextual computing requirements in military information system[J]. Systems Engineering and Electronics, 2023, 46(1): 190-195.
1 | 黄向阳, 张智雄, 刘细文, 等. 中国科学院文献情报中心"十三五"发展重点[J]. 数字图书馆论坛, 2016, (11): 21- 26. |
HUANG X Y , ZHANG Z X , LIU X W , et al. The development focus of literature and information center of chinese academy of sciences in the 13th Five Year Plan[J]. Digital Library Forum, 2016, (11): 21- 26. | |
2 |
BURITA L , HRABOVSKY J , NOVAK A , et al. Systems integration in military environment[J]. Advances in Military Technology, 2020, 15 (1): 25- 42.
doi: 10.3849/aimt.01334 |
3 | 汪永琳, 丁一. 面向普适终端的上下文情境计算建模方法及系统设计[J]. 微计算机信息, 2010, 26 (8): 79- 81. |
WANG Y L , DING Y . A context-aware computing modeling and system designed for pervasive computing devices[J]. Microcomputer Information, 2010, 26 (8): 79- 81. | |
4 |
FRISBY J , SMITH V , TRAUB S , et al. Contextual computing: a bluetooth based approach for tracking healthcare providers in the emergency room[J]. Journal of Biomedical Informatics, 2017, 65, 97- 104.
doi: 10.1016/j.jbi.2016.11.008 |
5 | 杜婉鹏, 叶莎莎. 移动图书馆情境化知识服务需求研究[J]. 现代办公, 2021, (10): 182- 184. |
DU W P , YE S S . Research on the requirement of mobile contextualized knowledge service in library[J]. Modem Office, 2021, (10): 182- 184. | |
6 | 孙正, 李峰, 戈洪宇. 战时精确情境信息条件下的备件分配模型研究[J]. 兵器装备工程学报, 2019, 40 (3): 205- 211. |
SUN Z , LI F , GE H Y . Research on wartime spare parts allocation model based on situation matching[J]. Journal of Ordnance Equipment Engineering, 2019, 40 (3): 205- 211. | |
7 | 赵小惠, 周爱琴, 石杨斌, 等. 基于情境—需求本体的客户定制需求挖掘[J]. 包装工程, 2021, 42 (4): 90- 96. |
ZHAO X H , ZHOU A Q , SHI Y B , et al. Customized demand mining based on situation-demand ontology[J]. Packaging Engineering, 2021, 42 (4): 90- 96. | |
8 |
MUNIZ C P , GOLDSCHMIDT R , CHOREN R . Combining contextual, temporal and topological information for unsupervised link prediction in social networks[J]. Knowledge-Based Systems, 2018, 156, 129- 137.
doi: 10.1016/j.knosys.2018.05.027 |
9 |
KRIVIC P , KUSEK M , CAVRAK I . Dynamic scheduling of contextually categorized internet of things services in fog computing environment[J]. Sensors, 2022, 22 (2): 465.
doi: 10.3390/s22020465 |
10 | HANRATTY T, HEILMAN E, CAYLOR J. Understanding the contextualization of information in complex military decision spaces[C]//Proc. of the IEEE Conference on Cognitive and Computational Aspects of Situation Management, 2020: 175-179. |
11 | YAMADA S, OMORI T, OHNISHI A. Verification method of reliability requirement[C]//Proc. of the 23rd Intermational Conference on Knowledge-Based and Intelligent Information & Engineering Systems, 2019: 860-869. |
12 | LIU Q Q, CHEN X H, JIN Z. Environment model based requirements consistency verification: an example[C]//Proc. of the IEEE 29th International Requirements Engineering Conference Workshops, 2021: 422-427. |
13 | CHEN X H, ZHONG Z W, JIN Z, et al. Automating consistency verification of safety requirements for railway interlocking systems[C]//Proc. of the IEEE 27th International Requirements Engineering Conference, 2019: 308-318. |
14 | MO Q, DAI F, LI T. Consistency cerification between collaborative business processes and requirements[C]//Proc. of the International Conference on Internet of Things and IEEE Green Computing and Communications and IEEE Cyber, Physical and Social Computing and IEEE Smart Data, 2019: 526-532. |
15 |
WU C , HUANG Z H , YANG Y T , et al. Requirement consistency and integrity verification method based on natural language processing[J]. Journal of Physics: Conference Series, 2021, 1756 (1): 012002.
doi: 10.1088/1742-6596/1756/1/012002 |
16 | KIVELA A , HYVONEN E . Ontological theories for the Semantic Web[M]. Helsinki: HIIT Publications, 2002: 111- 136. |
17 | JARRAR M. The arabic ontology-an arabic wordnet with ontologically clean content[EB/OL]. [2022-03-05]. http://arxiv.org/abs/2205.09664. |
18 |
LEI Y L , ZHU Z , LI Q . An ontological metamodeling framework for semantic simulation model engineering[J]. Journal of Systems Engineering and Electronics, 2020, 31 (3): 527- 538.
doi: 10.23919/JSEE.2020.000032 |
19 |
ROBERT J R , KELSO T S , DANIEL A O . Orbital debris ontology, terminology, and knowledge modeling[J]. Journal of Space Safety Infineering, 2020, 7 (3): 451- 458.
doi: 10.1016/j.jsse.2020.07.008 |
20 | CHEN J , WU Y . Rules-based object-relational databases ontology construction[J]. Journal of Systems Engineering and Electronics, 2009, 20 (1): 211- 215. |
21 |
DONG Q C , WANG Z X , ZHU W X , et al. Capability requirements modeling and verification based on fuzzy ontology[J]. Journal of Systems Engineering and Electronics, 2012, 23 (1): 78- 87.
doi: 10.1109/JSEE.2012.00011 |
22 |
ZHU W X , WANG Z X , HOU G L . Capability-based context ontology modeling and reasoning for C4ISR communication[J]. Journal of Systems Engineering and Electronics, 2016, 27 (4): 845- 857.
doi: 10.21629/JSEE.2016.04.13 |
23 | SCOTT G , LOUISE M N . Nominalization and natural language ontology[J]. Linguestics, 2022, 8, 257- 277. |
24 |
ANDREW P . Atomic ontology[J]. Synthese, 2020, 197 (1): 355- 379.
doi: 10.1007/s11229-018-1725-8 |
25 |
HALA A , ABDULRAHMAN M , HESSAH A . Domain onto-logy for requirements classification in requirements engineering context[J]. IEEE Access, 2020, 8, 89899- 89908.
doi: 10.1109/ACCESS.2020.2993838 |
26 | LI T , CHEN Z S . An ontology-based learning approach for automatically classifying security requirements[J]. Journal of Systems and Software, 2020, 165, 1- 13. |
27 |
MUHAMMAD W I , NADEEM A C , SYED K S , et al. User context ontology for adaptive mobile-phone interfaces[J]. IEEE Access, 2021, 9, 96751- 96762.
doi: 10.1109/ACCESS.2021.3095300 |
28 | ABDUL S , MOHAMMAD N A . An improved methodology for collaborative construction of reusable, localized, and shareable ontology[J]. Digital Object Identifier, 2021, 9, 17463- 17484. |
29 | 郭兆, 魏长江. 基于模型检验的需求不一致研究[J]. 计算机工程与技术, 2021, 42 (1): 127- 135. |
GUO Z , WEI C J . Research on requirement inconsistent method based on model checking[J]. Computer Engineering and Design, 2021, 42 (1): 127- 135. | |
30 |
NAGlAA F , WAlAA G . ProGOMap: automatic generation of mappings from property graphs to ontologies[J]. IEEE Access, 2021, 9, 113100- 113116.
doi: 10.1109/ACCESS.2021.3104293 |
31 |
FERNANDEZ A , GARCIA R . Conformance testing of ontologies through ontology requirements[J]. Engineering Applications of Artificial Intelligence, 2021, 97, 104026.
doi: 10.1016/j.engappai.2020.104026 |
32 | 孙雪, 黄志球, 沈国华, 等. 基于本体和BN的无人车行为决策方法[J]. 系统工程与电子技术, 2021, 43 (2): 452- 465. |
SUN X , HUANG Z Q , SHEN G H , et al. Bebavior decision method of autonomous vehicle based on ontology and BN[J]. Systems Engineering and Electronics, 2021, 43 (2): 452- 465. |
[1] | Haoliang REN, Jianchao ZHANG, Huichuan CHENG. Modeling and analysis method of weapon equipment system capability requirements based on SysML [J]. Systems Engineering and Electronics, 2023, 45(9): 2843-2851. |
[2] | Jinyan GAO, Luyuan WANG, Zhongshi PAN, Humei WANG. MBSE architecture modeling of Mars maintenance and management device [J]. Systems Engineering and Electronics, 2023, 45(5): 1441-1450. |
[3] | Haotian NIU, Cunbao MA, Pei HAN, Jianmin YI. Formal modeling and verification for mission safety of avionics system [J]. Systems Engineering and Electronics, 2023, 45(5): 1553-1569. |
[4] | Qibo PENG, Hailian ZHANG. Model-based requirements analysis method for manned space engineering [J]. Systems Engineering and Electronics, 2023, 45(11): 3532-3543. |
[5] | Hongan WANG, Da HUANG, Wei ZHANG, Ye PAN, Xiangfeng WANG, Huaizong SHAO, Jie GU. Distributed electromagnetic target identification based on decentrallized stochastic gradient descent [J]. Systems Engineering and Electronics, 2023, 45(10): 3024-3031. |
[6] | Xiangqian XU, Yajie DOU, Liwei QIAN, Jiang JIANG, Kewei YANG, Yuejin TAN. Research on agile development method-of-combat system-of-systems capability requirements [J]. Systems Engineering and Electronics, 2023, 45(10): 3139-3148. |
[7] | Kang LIU, Minghao HE, Jun HAN, Mingyue FENG, Xinglin DU. Data fusion algorithm for radar countermeasures and reconnaissance based on multi-sensor [J]. Systems Engineering and Electronics, 2023, 45(1): 101-107. |
[8] | Wenqing SHI, Haifeng WANG, Haixin CHEN. Fighter-drone teaming system requirements elicitation and verification [J]. Systems Engineering and Electronics, 2023, 45(1): 108-118. |
[9] | Nuoxi ZHENG, Wu LI, Xiaoqiang ZHOU, Gang LIU. Projection decision method for consistency of multiple attribute similarity [J]. Systems Engineering and Electronics, 2022, 44(9): 2869-2877. |
[10] | Qian LIU, Yunjun LU, Kebin CHEN, Mengyao HAN, Liang GUO. Combat task decomposition EVA method based on binary constraints of task subject [J]. Systems Engineering and Electronics, 2022, 44(7): 2201-2210. |
[11] | Jiachen LIU, Lei DONG, Changxiao ZHAO, Hongbing CHEN. Simulation and verification of DIMA dynamic reconfiguration based on formal method [J]. Systems Engineering and Electronics, 2022, 44(4): 1282-1290. |
[12] | Liwei QIAN, Xiangqian XU, Yajie DOU, Yuejin TAN. System capability requirements recommendation method based on RIMER method [J]. Systems Engineering and Electronics, 2022, 44(12): 3719-3727. |
[13] | Wanbin LIAO, Yunfeng CAO, Xinyao WANG. DSL building for requirement analysis of complex system [J]. Systems Engineering and Electronics, 2022, 44(11): 3443-3454. |
[14] | Luda ZHAO, Bin WANG, Wei ZENG. Three-level programming model of electronic countermeasures force requirements in offensive combat [J]. Systems Engineering and Electronics, 2021, 43(6): 1564-1571. |
[15] | Yuyao ZHAI, Xianjun SHI, Jiapeng LYU, Lu HAN. Modeling and index evaluation of multi-level testability of missiles based on GSPN [J]. Systems Engineering and Electronics, 2021, 43(4): 970-979. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||