Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (4): 970-979.doi: 10.12305/j.issn.1001-506X.2021.04.14
• Systems Engineering • Previous Articles Next Articles
Yuyao ZHAI*(), Xianjun SHI(
), Jiapeng LYU(
), Lu HAN(
)
Received:
2020-03-19
Online:
2021-03-25
Published:
2021-03-31
Contact:
Yuyao ZHAI
E-mail:412997283@qq.com;sxjaa@sina.com;lvjiapeng001@163.com;953339581@qq.com
CLC Number:
Yuyao ZHAI, Xianjun SHI, Jiapeng LYU, Lu HAN. Modeling and index evaluation of multi-level testability of missiles based on GSPN[J]. Systems Engineering and Electronics, 2021, 43(4): 970-979.
Table 2
Specific meaning of elements1)"
库所 | 含义 | 变迁 | 含义 | 速率或概率 |
p1 | 导弹系统正常 | t0 | 出现虚警 | γFA |
p2 | 导弹出现故障 | t1 | 故障发生 | λ |
p3 | 检测到故障 | t2 | 故障检测率 | γFD |
p4 | 故障不能被检测 | t3 | 故障不可检测的概率 | 1-γFD |
p5 | 发生故障的LRU | t4 | 人工测试 | λt |
p6 | 维修后的LRU | t5 | 拆卸LRU | λr |
p7i | LRUi故障 | t6 | 安装LRU | μo |
p8i | LRUi故障检测完成 | t7i | LRUi故障发生概率 | γi |
p9i | LRUi故障无法检测 | t8i | LRUi故障检测 | ηi |
p10i | LRUi检测出故障 | t9i | LRUi故障检测率 | γFDi |
p11 | 修复好的LRU | t10i | LRUi故障不可检测率 | 1-γFDi |
t11i | LRUi人工测试 | μi | ||
t12i | 故障维修 | λs | ||
t13 | 运送LRU | λti |
1 | GLB2547A-2012. General requirement for materiel testability program[S]. Beijing: General Armament Department of the PLA, 2012. |
2 | 田仲, 石君友. 系统测试性设计分析与验证[M]. 北京: 北京航空航天大学出版社, 2003: 17- 19. |
TIAN Z , SHI J Y . Testability design analysis and verification on systems[M]. Beijing: Beihang University Press, 2003: 17- 19. | |
3 | DEF STANOO-40. Reliability and maintain ability (R&M) assurance guidance[S]. British: the Ministry of Defence, 2002. |
4 | 聂冲. 基于过程模型的导弹总体优化设计框架及其关键技术研究[D]. 长沙: 国防科学技术大学, 2006. |
NIE C. Research on process model based on framework of gene-ral missile design optimization[D]. Changsha: National Uni-versity of Defense Technology, 2006. | |
5 | 杜晓明. 非确定多属性决策理论方法及在维修性设计中的应用[D]. 南京: 南京理工大学, 1998. |
DU X M. Non-deterministic multi-attribute decision-making theory method and its application in maintainability design[D]. Nanjing: Nanjing University of Science & Technology, 1998. | |
6 | 吕晓明, 黄考利, 连光耀, 等. 复杂装备系统级测试性指标确定方法研究[J]. 计算机测量与控制, 2008, 16 (3): 357- 359. |
LYU X M , HUANG K L , LIAN G Y , et al. Research on determination method of system-level testability index for complex equipment[J]. Computer Measurement & Control, 2008, 16 (3): 357- 359. | |
7 |
翟禹尧, 史贤俊, 吕佳朋. 基于广义随机Petri网的导弹系统测试性建模与指标评估方法研究[J]. 兵工学报, 2019, 40 (10): 2070- 2079.
doi: 10.3969/j.issn.1000-1093.2019.10.012 |
ZHAI Y Y , SHI X J , LYU J P . Research on evaluation method for testability index and modeling of missile system based on GSPN[J]. Acta Armamentarii, 2019, 40 (10): 2070- 2079.
doi: 10.3969/j.issn.1000-1093.2019.10.012 |
|
8 | 苏永定, 刘冠军, 邱静. 基于DSPN的多阶段任务系统测试性需求建模与分析[J]. 系统工程理论与实践, 2010, 30 (7): 1272- 1278. |
SU Y D , LIU G J , QIU J . Modeling and analysis of test requirements for multi-stage task system based on DSPN[J]. Systems Engineering-Theory & Practice, 2010, 30 (7): 1272- 1278. | |
9 | ZHAO J T , CHEN Z Q , LIU Z X . Modeling and analysis of colored Petri net based on the semi-tensor product of matrices[J]. Science China (Information Sciences), 2018, 61 (1): 70- 85. |
10 | SU Y D, QIU J, LIU G J, et al. Method of Testability index determination based on generalized stochastic petri net[C]//Proc. of the IEEE Circuits and System, International Confe-rence on Testing and Diagnosis, 2009. |
11 |
DING Z H , JIANG M Y , CHEN H B , et al. Petri nets based test case generation for evolved specification[J]. Science China Information Sciences, 2016, 59, 080105.
doi: 10.1007/s11432-016-5598-5 |
12 | SCHROEDER G J, JOHNSON M M. Complex availability: the new availabily problem[C]//Proc. of the Annual Relability and Maintainability Symposium, 1990: 268-274. |
13 | 翟禹尧, 史贤俊, 秦玉峰, 等. 基于层次广义随机Petri网的测试性建模新方法[J]. 兵工学报, 2020, 40 (1): 161- 170. |
ZHAI Y Y , SHI X J , QIN Y F , et al. A new testability model method based on hierarchical generalized stochastic Petri nets[J]. Acta Armamentarii, 2020, 40 (1): 161- 170. | |
14 | SHELDON F T, GRENIER S, BENZINGER M. Specification, safety and reliability analysis using stochastic Petri net models[C]//Proc. of the 10th International Workshop on Software Specification and Design, 2000: 123. |
15 |
MAHULEA C , SEATZU C , CABASINO M P , et al. Fault diagnosis of discrete-event systems using continuous Petri nets[J]. IEEE Trans.on Systems, Man and Cybernetics, Part A: Systems and Humans, 2012, 42 (4): 970- 984.
doi: 10.1109/TSMCA.2012.2183358 |
16 | BASILE F , CHIACCHIO P , GROSSO D D . A two-stage modelling architecture for distributed control of real-time industrial systems: application of UML and Petri net[J]. Computer Standards & Interfaces, 2009, 31, 528- 538. |
17 | 孙有朝, 郭媛媛, 崔灿丽. 应用有色Petri网的复杂系统四性一体化综合评估方法研究[J]. 南京航空航天大学学报, 2017, 49 (5): 707- 717. |
SUN Y C , GUO Y Y , CUI C L . Research on complex system four qualities integration evaluation based on color Petri net[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49 (5): 707- 717. | |
18 |
LI H T , WANG Y Z , GUO P L . Output reachability analysis and output regulation control design of Boolean control networks[J]. Science China Information Sciences, 2017, 60, 022202.
doi: 10.1007/s11432-015-0611-4 |
19 | LIU R J , LU J Q , LIU Y , et al. Delayed feedback control for stabilization of Boolean control networks with state delay[J]. IEEE Trans.on Neural Networks and Learning Systems, 2018, 29 (7): 3283- 3288. |
20 | WANG Y H, LU Y J, LI M, et al. Fault identification method based on fuzzy fault Petri net[C]//Proc. of the International Conference on Electrical and Information Technologies for Rail Transportation, 2016: 125-133. |
21 |
GUO Y Q . Controllability of Boolean control networks with state-dependent constraints[J]. Science China Information Sciences, 2016, 59, 032202.
doi: 10.1007/s11432-015-5369-8 |
22 |
ZHANG K Z , ZHANG L J . Controllability of probabilistic Boolean control networks with time-variant delays in states[J]. Science China Information Sciences, 2016, 59, 092204.
doi: 10.1007/s11432-015-5423-6 |
23 |
MANSOUR M M , WAHAB M A A , SOLIMAN W M . Petri nets for fault diagnosis of large power generation station[J]. Ain Shams Engineering Journal, 2013, 4 (4): 831- 842.
doi: 10.1016/j.asej.2013.04.006 |
24 |
WU X Y , YAN H , LI L R . Numerical method for reliability analysis of phased mission system using Markov chains[J]. Communication in Statistics: Theory and Methods, 2012, 41 (21): 3960- 3973.
doi: 10.1080/03610926.2012.697969 |
25 | 邱静, 刘冠军, 杨鹏, 等. 装备测试性建模与设计技术[M]. 北京: 科学出版社, 2012. |
QIU J , LIU G J , YAN P , et al. Equipment test modeling and design technology[M]. Beijing: Science Press, 2012. | |
26 | WANG G, LIU G J, SU Y D. Research on Correlation between Testability Parameters[C]//Proc. of the Prognostics and Systems Health Management Conference, 2011. |
27 | 苏永定. 装备系统测试性需求分析技术研究[D]. 长沙: 国防科学技术大学, 2011. |
SU Y D. Research on testability requirement analysis for equipment[D]. Changsha: National University of Defense Technology, 2011. | |
28 | 林闯. 随机Petri网和系统性能评价[M]. 北京: 清华大学出版社, 2005: 19- 35. |
LIN C . Evaluation of stochastic Petri net and system performance[M]. Beijing: Tsinghua University Press, 2005: 19- 35. | |
29 | LEE K H , FABREL J . Hierarchical reduction method for analysis and decomposition of Petri nets[J]. IEEE Trans.on System, Man, Cybernetics, 1985, 15 (2): 272- 280. |
30 |
KUMAR S , DANDOTIYA R , KUMAR R . Inspection frequency optimization model for degrading flowlines on an offshore platform[J]. International Journal of Reliability, Quality and Safety Engineering, 2008, 15 (2): 167- 180.
doi: 10.1142/S0218539308003015 |
[1] | Jie ZHU, Ning HUANG, Liang CHENG. Multi-parameter sensitivity analysis of network function virtualization application availability [J]. Systems Engineering and Electronics, 2022, 44(8): 2677-2687. |
[2] | Weining MA, Qiwei HU, Zhiyuan YANG. Maintenance decision model of equipment multi-component systems with degradation dependence [J]. Systems Engineering and Electronics, 2022, 44(4): 1424-1432. |
[3] | Yunxiang CHEN, Jingfeng LI, Huachun XIANG, Hengnian LI. A CBM optimization model for mission-oriented system based on inverse Gaussian degradation process [J]. Systems Engineering and Electronics, 2022, 44(1): 338-346. |
[4] | Zhiwei CHEN, Jing WANG, Changchao GU, Jianchun ZHANG, Jilong ZHONG. Performance availability and resilience analysis of weapon system of systems considering dynamic reconfiguration [J]. Systems Engineering and Electronics, 2021, 43(8): 2347-2354. |
[5] | Bin ZENG, Yuanyuan CHEN, Houpu LI. Launch scheduling optimization considering availability of maintenance equipment for carrier aircraft [J]. Systems Engineering and Electronics, 2021, 43(7): 1856-1865. |
[6] | Xing PAN, Zhenyu ZHANG, Yanmei ZHANG, Ranran WANG. Equipment SoS support effectiveness evaluation based on Sobol sensitivity analysis [J]. Systems Engineering and Electronics, 2021, 43(2): 390-398. |
[7] | Xuyu WANG, Min HU, Xueyang ZHANG, Yulong ZHAO, Jiuyang LI. Analysis and evaluation method of navigation satellite constellation backup strategy based on Petri net [J]. Systems Engineering and Electronics, 2021, 43(2): 434-442. |
[8] | Yueqiang ZHAO, Shi AN, Qiang MAI, Qingyan XU, Yanan GUO. Effectiveness modeling of air defense missile weapon system based on ADC method [J]. Systems Engineering and Electronics, 2020, 42(9): 2003-2012. |
[9] | Junliang LI, Huayuan ZHU, Liming WANG, Lingzhi WANG. Interval availability for complex system based on mixed maintenance strategy [J]. Systems Engineering and Electronics, 2020, 42(5): 1190-1196. |
[10] | YANG Jianhua, HAN Mengying. Multi-objective optimization model for spare parts maintenance based on delay-time theory [J]. Systems Engineering and Electronics, 2019, 41(8): 1903-1912. |
[11] | YE Wen, LV Xinyi, LV Xiaofeng, MA Ling. Optimized test selection method considering critical faults [J]. Systems Engineering and Electronics, 2019, 41(7): 1583-1589. |
[12] | ZHOU Kui, SUN Shiyan, YAN Ping. Bayes method for determining fault sample size based on posterior risk [J]. Systems Engineering and Electronics, 2019, 41(7): 1672-1676. |
[13] | ZHAI Yali, ZHANG Zhihua, LI Guangyu. Operational readiness model based on limited spare [J]. Systems Engineering and Electronics, 2019, 41(5): 1043-1048. |
[14] | FENG Yunwen, LIU Kuijian, XUE Xiaofeng, LIU Yuchang. Joint optimization of redundancy level and spare parts for redundant system based on Markov process [J]. Systems Engineering and Electronics, 2019, 41(4): 919-928. |
[15] | XIE Haoyu, QIU Jing, YANG Peng. Testability index allocation method considering unit mutual test [J]. Systems Engineering and Electronics, 2019, 41(12): 2899-2904. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||