Systems Engineering and Electronics ›› 2023, Vol. 46 ›› Issue (1): 182-189.doi: 10.12305/j.issn.1001-506X.2024.01.21
• Systems Engineering • Previous Articles
Zelun GAO1,2, Shaoqiu ZHENG2, Rupeng LIANG2, Yanyan HUANG1,*
Received:
2022-05-11
Online:
2023-12-28
Published:
2024-01-11
Contact:
Yanyan HUANG
CLC Number:
Zelun GAO, Shaoqiu ZHENG, Rupeng LIANG, Yanyan HUANG. Model of strike target preference under super-network system operation[J]. Systems Engineering and Electronics, 2023, 46(1): 182-189.
Table 2
Delphi score sheet"
专家编号 | 目标0 | 目标1 | … | 目标8 | 目标9 | … | 目标18 | … | 目标23 | ||||||||||||||
重要度 0.6 | 打击代价0.4 | 重要度 0.6 | 打击代价0.4 | … | 重要度 0.6 | 打击代价0.4 | 重要度 0.6 | 打击代价0.4 | … | 重要度 0.6 | 打击代价0.4 | … | 重要度 0.6 | 打击代价0.4 | |||||||||
1 | 6 | 4 | 3 | 2 | … | 8 | 6 | 6 | 4 | … | 8 | 9 | … | 2 | 3 | ||||||||
2 | 5 | 4 | 3 | 2 | … | 8 | 6 | 8 | 4 | … | 7 | 8 | … | 3 | 2 | ||||||||
3 | 5 | 3 | 4 | 4 | … | 7 | 5 | 7 | 5 | … | 7 | 9 | … | 1 | 2 | ||||||||
4 | 7 | 3 | 2 | 3 | … | 6 | 6 | 7 | 6 | … | 8 | 8 | … | 2 | 2 | ||||||||
5 | 7 | 5 | 3 | 4 | … | 7 | 6 | 7 | 5 | … | 9 | 8 | … | 2 | 4 | ||||||||
6 | 6 | 5 | 3 | 2 | … | 6 | 7 | 8 | 6 | … | 8 | 9 | … | 2 | 3 | ||||||||
7 | 6 | 3 | 5 | 4 | … | 6 | 7 | 8 | 5 | … | 8 | 8 | … | 1 | 3 | ||||||||
8 | 7 | 5 | 1 | 3 | … | 8 | 6 | 6 | 5 | … | 7 | 8 | … | 3 | 4 | ||||||||
9 | 5 | 5 | 2 | 3 | … | 7 | 6 | 6 | 6 | … | 9 | 9 | … | 3 | 4 | ||||||||
10 | 6 | 3 | 4 | 3 | … | 7 | 5 | 7 | 4 | … | 8 | 9 | … | 1 | 3 | ||||||||
均分 | 6 | 4 | 3 | 3 | … | 7 | 6 | 7 | 5 | … | 7.9 | 8.5 | … | 2 | 3 | ||||||||
加权分 | 5.2 | 3.0 | … | 6.6 | 6.2 | … | 8.14 | … | 2.4 |
1 | 杜正军, 张国辉, 李庆震, 等. 作战体系效能分析及关键目标选择模型研究[J]. 火力与指挥控制, 2022, 47 (1): 125- 129. |
DU Z J , ZHANG G H , LI Q Z , et al. Research on efficiency analysis of commbat system of systems and key target selecting model[J]. Fire Control & Command Control, 2022, 47 (1): 125- 129. | |
2 | 刚建勋, 叶雄兵, 于鸿源. 基于超网络的航母编队作战体系建模分析[J]. 指挥控制与仿真, 2018, 40 (5): 6-10, 78. |
GANG J X , YE X B , YU H Y . Modeling and analysis of carrier formation combat SoS base on hypernetworks[J]. Command Control & Simulation, 2018, 40 (5): 6-10, 78. | |
3 | 王超, 郭基联, 符凌云. 基于拓扑势的作战体系网络节点重要度评估方法[J]. 兵工学报, 2020, 41 (8): 1658- 1664. |
WANG C , GUO J L , FU L Y . Research on evaluation method of node importance of combat system-of-systems network based on topological potential[J]. Acta Armamentarii, 2020, 41 (8): 1658- 1664. | |
4 | 张世燎, 阚亚斌, 高晶. 登陆作战中的打击目标选择效益评估研究[J]. 火力与指挥控制, 2018, 43 (11): 87-90, 97. |
ZHANG S L , KAN Y B , GAO J . Study of benefit evaluation method for selecting target in landing operations[J]. Fire Control & Command Control, 2018, 43 (11): 87-90, 97. | |
5 | 李仁见, 司光亚, 张昱, 等. 基于超网的体系效能可视化分析[J]. 系统仿真学报, 2014, 26 (9): 1944-1949, 1955. |
LI R J , SI G Y , ZHANG Y , et al. Visualizing analysis for effectiveness of system of systems based on network of networks[J]. Journal of System Simulation, 2014, 26 (9): 1944-1949, 1955. | |
6 | 程光权, 陆永中, 张明星, 等. 复杂网络节点重要度评估及网络脆弱性分析[J]. 国防科技大学学报, 2017, 39 (1): 120- 127. |
CHENG G Q , LU Y Z , ZHANG M X , et al. Node importance evaluation and network vulnerability analysis on complex network[J]. Journal of National University of Defense Technology, 2017, 39 (1): 120- 127. | |
7 | 李茂林, 龙建国, 张德群. 基于复杂网络理论的作战体系节点重要性分析[J]. 指挥控制与仿真, 2010, 32 (3): 15- 17. |
LI M L , LONG J G , ZHANG D Q . Analysis of node's importance of combat system based on theory of complex networks[J]. Command Control & Simulation, 2010, 32 (3): 15- 17. | |
8 | 刘昊, 邢岩, 吴世杰. 基于体系破击的联合火力打击目标价值评估[J]. 系统工程与电子技术, 2020, 42 (12): 2802- 2810. |
LIU H , XING Y , WU S J . Value evaluation of joint fire strike target based on system-of-systems attack[J]. Systems Engineering and Electronics, 2020, 42 (12): 2802- 2810. | |
9 | 刘彦, 陈春良, 昝翔, 等. 考虑双层耦合复杂网络的装备重要度评估方法[J]. 兵工学报, 2018, 39 (9): 1829- 1840. |
LIU Y , CHEN C L , ZAN X , et al. Evaluation method for equipment importance considering bi-layer coupled complex network[J]. Acta Armamentarii, 2018, 39 (9): 1829- 1840. | |
10 | 王宏宇, 吴纬, 魏艳艳. 基于超网络模型武器装备体系抗毁性分析[J]. 系统工程与电子技术, 2017, 39 (8): 1782- 1787. |
WANG H Y , WU W , WEI Y Y . Weapon system-of-systems invulnerability analysis based on super network model[J]. Systems Engineering and Electronics, 2017, 39 (8): 1782- 1787. | |
11 | 李尔玉, 龚建兴, 黄健, 等. 基于功能链的作战体系复杂网络节点重要性评价方法[J]. 指挥与控制学报, 2018, 4 (1): 42- 49. |
LI E Y , GONG J X , HUANG J , et al. Node importance analysis of complex networks for combat systems based on function chain[J]. Journal of Command and Control, 2018, 4 (1): 42- 49. | |
12 | LI Z S, LI Y B. Application of multi-objective optimization problem based on genetic algorithm[C]//Proc. of the International Conference on Artificial Intelligence and Information Technology, 2021. |
13 | HOLLAND J H . Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence[M]. Cambridge, Massachusetts: MIT Press, 1992. |
14 | COLORNI A, DORIGO M, MANIEZZO V. Distributed optimization by ant colonies[C]//Proc. of the European Conference on Artificial Life, 1991: 134-142. |
15 | KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proc. of the International Conference on Neural Networks, 1995: 1942-1948. |
16 | 李晓磊, 邵之江, 钱积新. 一种基于动物自治体的寻优模式: 鱼群算法[J]. 系统工程理论与实践, 2002, 22 (11): 32- 38. |
LI X L , SHAO Z J , QIAN J X . An optimizing method based on autonomous animats: fish-swarm algorithm[J]. Systems Engineering-Theory & Practice, 2002, 22 (11): 32- 38. | |
17 |
SUN T F , ZHANG H , LIU S J , et al. Application of an artificial fish swarm algorithm in solving multiobjective trajectory optimization problems[J]. Chemistry and Technology of Fuels and Oils, 2017, 53 (4): 541- 547.
doi: 10.1007/s10553-017-0834-2 |
18 | ZHANG C, ZHANG F M, LI F, et al. Improved artificial fish swarm algorithm[C]//Proc. of the IEEE 9th Conference on Industrial Electronics and Applications, 2014: 748-753. |
19 |
ZHANG L Y , FU M Y , FEI T , et al. The artificial fish swarm algorithm improved by fireworks algorithm[J]. Automatic Control and Computer Sciences, 2022, 56 (4): 311- 323.
doi: 10.3103/S0146411622040101 |
20 |
LIU Y , TAO Z P , YANG J , et al. The modified artificial fish swarm algorithm for least-cost planning of a regional water supply network problem[J]. Sustainability, 2019, 11 (15): 4121.
doi: 10.3390/su11154121 |
21 | DUAN Q C , MAO M X , DUAN P , et al. An improved artificial fish swarm algorithm optimized by particle swarm optimization algorithm with extended memory[J]. Kybernetes: The International Journal of Systems & Cybernetics, 2016, 45 (2): 210- 222. |
22 | YANG Z , LIU D , ZHANG X Y , et al. Optimization of rolling schedule for single-stand reversible cold rolling mill based on multiobjective artificial fish swarm algorithm[J]. Wireless Communications & Mobile Computing, 2022, 9167017. |
23 | 杨圩生, 王钰, 杨洋, 等. 基于作战环的不同节点攻击策略下的作战网络效能评估[J]. 系统工程与电子技术, 2021, 43 (11): 3220- 3228. |
YANG W S , WANG Y , YANG Y , et al. Combat network effectiveness evaluation under different node attack strategies based on operation loop[J]. Systems Engineering and Electronics, 2021, 43 (11): 3220- 3228. | |
24 | 罗承昆, 陈云翔, 王莉莉, 等. 基于作战环和改进信息熵的体系效能评估方法[J]. 系统工程与电子技术, 2019, 41 (1): 73- 80. |
LUO C K , CHEN Y X , WANG L L , et al. Effectiveness evaluation method of system-of-systems based on operation loop and improved information entropy[J]. Systems Engineering and Electronics, 2019, 41 (1): 73- 80. | |
25 |
LYU L Y , CHEN D B , REN X L , et al. Vital nodes identification in complex networks[J]. Physics Reports, 2016, 650, 1- 63.
doi: 10.1016/j.physrep.2016.06.007 |
26 | XU X , ZHU C , WANG Q Y , et al. Identifying vital nodes in complex networks by adjacency information entropy[J]. Scientific Reports, 2020, 2691. |
27 | 魏东涛, 刘晓东, 李鹏, 等. 基于节点重要度与改进信息熵的装备体系效能评估方法研究[J]. 系统工程与电子技术, 2021, 43 (12): 3614- 3623. |
WEI D T , LIU X D , LI P , et al. Research on effectiveness evaluation method of equipment system based on node importance and improved information entropy[J]. Systems Engineering and Electronics, 2021, 43 (12): 3614- 3623. | |
28 | 张朝炜, 柳云祥, 朱永利. 基于改进人工鱼群算法的大规模多目标机组组合优化[J]. 电力系统保护与控制, 2021, 49 (8): 100- 108. |
ZHANG Z W , LIU Y X , ZHU Y L . Large-scale multi-objective unit commitment optimization based on an improved artificial fish swarm algorithm[J]. Power System Protection and Control, 2021, 49 (8): 100- 108. | |
29 |
YANG Y K , LIU J C , TAN S B . A multi-objective evolutionary algorithm for steady-state constrained multi-objective optimization problems[J]. Applied Soft Computing, 2021, 101, 107042.
doi: 10.1016/j.asoc.2020.107042 |
30 | HWANG W L , LEE C C , PENG G J . Multi-objective optimization and characterization of Pareto points for scalable coding[J]. IEEE Trans.on Circuits and Systems for Video Technology, 2018, 29 (7): 2096- 2111. |
[1] | Liyao WANG, Jin ZHANG, Hongxi ZHOU, Kemao WANG. Planning of multi-station accessing multi-satellite based on physical planning [J]. Systems Engineering and Electronics, 2023, 45(8): 2514-2520. |
[2] | Hongzhou ZHAI, Hua ZHANG, Linna WU, Hequn BU, Kaixiang GONG. Optimization algorithm for reliability redundancy design based on collaborative balance [J]. Systems Engineering and Electronics, 2023, 45(12): 4084-4089. |
[3] | Shiying YAN, Kefei YAN, Wei FANG, Hengyang LU. Large-scale multi-objective algorithm based on neighborhood adaptive of differential evolution [J]. Systems Engineering and Electronics, 2022, 44(7): 2112-2124. |
[4] | Qian LIU, Yunjun LU, Kebin CHEN, Mengyao HAN, Liang GUO. Combat task decomposition EVA method based on binary constraints of task subject [J]. Systems Engineering and Electronics, 2022, 44(7): 2201-2210. |
[5] | Tongliang LU, Wenhao CHEN, Bingfeng GE, Qiling DENG. Multi-layer network modeling for combat system-of-systems under information support [J]. Systems Engineering and Electronics, 2022, 44(2): 520-528. |
[6] | Rongwei CUI, Wei HAN, Xichao SU, Liguo WANG, Yujie LIU. Integrated optimization of carrier-based aircraft flight deck operations scheduling and resource configuration for pre-flight preparation stage [J]. Systems Engineering and Electronics, 2021, 43(7): 1884-1893. |
[7] | Boyuan XIA, Kewei YANG, Zhiwei YANG, Xiaoke ZHANG, Danling ZHAO. Multi-objective optimization of equipment portfolio based on kill-web evaluation [J]. Systems Engineering and Electronics, 2021, 43(2): 399-409. |
[8] | Chunming TIAN, An YANG, Le YE, Jianxing LI, Yuchen HE. End-to-end antenna optimization based on Bayesian optimization algorithm [J]. Systems Engineering and Electronics, 2021, 43(12): 3413-3419. |
[9] | Xin ZHOU, Weiping WANG, Yifan ZHU, Tao WANG, Tian JING. Unmanned equipment SoS architecture scheme space searchingmethod based on the sequential allocated mechanism [J]. Systems Engineering and Electronics, 2021, 43(11): 3211-3219. |
[10] | Lei LAI, Dewei WU, Kun ZOU, Kun HAN, Hailin LI. Three dimensional route planning of UAV based on the multi-criterion interactive membrane evolutionary algorithm [J]. Systems Engineering and Electronics, 2021, 43(1): 138-146. |
[11] | Yadong WANG, Quan SHI, Wei XIA, Cai CHEN. Structure optimization of spare parts supply network based on hyper heuristic algorithm [J]. Systems Engineering and Electronics, 2020, 42(3): 620-629. |
[12] | Chunshan DING. Survey on progress and prospect of sensor management [J]. Systems Engineering and Electronics, 2020, 42(12): 2761-2770. |
[13] | Hao LIU, Yan XING, Shijie WU. Value evaluation of joint fire strike target based on system-of-systems attack [J]. Systems Engineering and Electronics, 2020, 42(12): 2802-2810. |
[14] | Wubin MA, Rui WANG, Weichao WANG, Yahui WU, Su DENG, Hongbin HUANG. Micro-service composition deployment and scheduling strategy based on evolutionary multi-objective optimization [J]. Systems Engineering and Electronics, 2020, 42(1): 90-100. |
[15] | LI Ruiyang, WANG Zhixue, YU Minggang, HE Hongyue. Multi-objective portfolio optimization of system-of-systems based on robust capabilities#br# [J]. Systems Engineering and Electronics, 2019, 41(5): 1034-1042. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||