Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (12): 3806-3818.doi: 10.12305/j.issn.1001-506X.2023.12.10
• Sensors and Signal Processing • Previous Articles
Yanlei DU1, Xiaofeng YANG1,*, Sheng WANG1, Junjun YIN2, Huizhang YANG3, Jian YANG3
Received:2022-04-09
															
							
															
							
															
							
																	Online:2023-11-25
															
							
																	Published:2023-12-05
															
						Contact:
								Xiaofeng YANG   
																					CLC Number:
Yanlei DU, Xiaofeng YANG, Sheng WANG, Junjun YIN, Huizhang YANG, Jian YANG. Numerical investigation on the spatial ergodicity of ocean radar scattering and sea clutter amplitude statistical characteristics[J]. Systems Engineering and Electronics, 2023, 45(12): 3806-3818.
 
													
													Table 1
Deviations of ocean radar scattering simulations induced by using smaller ocean surfaces"
| 海面尺寸/λ | 风速5 m/s, θi=40°/dB | 风速10 m/s, θi=20°/dB | |||||||||
| θs∈[-60°, 60°] | θs∈[-90°, 90°] | θs∈[-60°, 60°] | θs∈[-90°, 90°] | ||||||||
| VV极化 | HH极化 | VV极化 | HH极化 | VV极化 | HH极化 | VV极化 | HH极化 | ||||
| 512 | - | - | - | - | - | - | - | - | |||
| 256 | 0.141 | 0.144 | 0.185 | 0.214 | 0.150 | 0.154 | 0.207 | 0.265 | |||
| 128 | 0.146 | 0.150 | 0.241 | 0.299 | 0.168 | 0.180 | 0.254 | 0.357 | |||
| 64 | 0.156 | 0.160 | 0.326 | 0.397 | 0.178 | 0.195 | 0.352 | 0.474 | |||
| 32 | 0.171 | 0.193 | 0.430 | 0.589 | 0.186 | 0.205 | 0.400 | 0.474 | |||
| 16 | 0.183 | 0.217 | 0.462 | 0.776 | 0.185 | 0.207 | 0.450 | 0.617 | |||
| 8 | 0.462 | 0.664 | 0.803 | 1.448 | 0.293 | 0.325 | 0.548 | 0.767 | |||
 
													
													Table 2
Deviations of normalized radar backscatter coefficients given by SSA-2 model relative to those from ocean surface with size of 512λ×512λ dB"
| 风速/(m/s) | 极化方式 | 海面尺寸/λ | ||
| 128 | 64 | 32 | ||
| 5 | VV极化 | 0.143 | 0.123 | 0.119 | 
| HH极化 | 0.140 | 0.135 | 0.132 | |
| HV极化 | 0.161 | 0.262 | 0.862 | |
| 10 | VV极化 | 0.153 | 0.151 | 0.217 | 
| HH极化 | 0.165 | 0.253 | 0.345* | |
| HV极化 | 0.312 | 0.852 | 1.673 | |
| 1 | ULABY F T , LONG D G . Microwave radar and radiometric remote sensing[M]. Ann Arbor: University of Michigan Press, 2015. | 
| 2 | TSANG L , KONG J , SHIN R T . Theory of microwave remote Sening[M]. New York: Wiley, 1985. | 
| 3 | 杨健, 殷君君. 极化雷达理论与遥感应用[M]. 北京: 科学出版社, 2020. | 
| YANG J , YIN J J . Polarimetric radar theory and remote sensing application[M]. Beijing: Science Press, 2020. | |
| 4 | 许述文, 白晓惠, 郭子薰, 等. 海杂波背景下雷达目标特征检测方法的现状与展望[J]. 雷达学报, 2020, 9 (4): 684- 714. | 
| XU S W , BAI X H , GUO Z X , et al. Status and prospects of feature-based detection methods for floating targets on the sea surface[J]. Journal of Radars, 2020, 9 (4): 684- 714. | |
| 5 | DE OLIVEIRA R ,  DUSSEAUX R ,  AFIFI S .  Analytical derivation of the stationarity and the ergodicity of a field scattered by a slightly rough random surface[J]. Wave Random Complex, 2010, 20 (3): 396- 418. doi: 10.1080/17455031003628392 | 
| 6 | TSANG L , KONG J A , SHIN R T . Scattering of electroma-gnetic waves: numerical simulations[M]. New York: Wiley, 2000. | 
| 7 | 丁昊, 刘宁波, 董云龙, 等. 雷达海杂波测量试验回顾与展望[J]. 雷达学报, 2019, 8 (3): 281- 302. | 
| DING H , LIU N B , DONG Y L , et al. Overview and prospects of radar sea clutter measurement experiments[J]. Journal of Radars, 2019, 8 (3): 281- 302. | |
| 8 | OZGUN O ,  KUZUOGLU M .  Physics-based modeling of sea clutter phenomenon by a full-wave numerical solver[J]. Wave Motion, 2022, 109, 102872. doi: 10.1016/j.wavemoti.2021.102872 | 
| 9 | BERRY M V . The statistical properties of echoes diffracted from rough surfaces[J]. Philosophical Transactions on Royal Society A, 1973, 273 (1237): 611- 654. | 
| 10 | DUSSEAUX R ,  DE OLIVEIRA R .  Effect of the illumination length on the statistical distribution of the field scattered from one-dimensional random rough surfaces: analytical formulae derived from the small perturbation method[J]. Wave Random Complex, 2007, 17 (3): 305- 320. doi: 10.1080/17455030701197056 | 
| 11 | LAM K W ,  LI Q ,  TSANG L , et al.  On the analysis of statistical distributions of UWB signal scattering by random rough surfaces based on Monte Carlo simulations of Maxwell equations[J]. IEEE Trans.on Antennas and Propagation, 2004, 52 (12): 3200- 3206. doi: 10.1109/TAP.2004.836414 | 
| 12 | AFIFI S ,  DUSSEAUX R ,  DE OLIVEIRA R .  Statistical distribution of the field scattered by rough layered interfaces: formula derived from the small perturbation method[J]. Wave Random Complex, 2010, 20 (1): 1- 22. doi: 10.1080/17455030903329374 | 
| 13 | FRANCESCHETTI G ,  MIGLIACCIO M ,  RICCIO D .  An electromagnetic fractal-based model for the study of fading[J]. Radio Science, 1996, 31 (6): 1749- 1759. doi: 10.1029/96RS02811 | 
| 14 | EL-BAH S ,  DUSSÉAUX R ,  AFIFI S .  Some statistical and spatial properties of signal scattering by 2D slightly rough random surfaces[J]. IEEE Trans on Antennas and Propagation, 2016, 64 (2): 721- 729. doi: 10.1109/TAP.2015.2511803 | 
| 15 | YANG X F ,  LI X F ,  PICHEL W G , et al.  Comparison of ocean surface winds from ENVISAT ASAR, MetOp ASCAT scatterometer, buoy measurements, and NOGAPS model[J]. IEEE Trans.on Geoscience and Remote Sensing, 2011, 49 (12): 4743- 4750. doi: 10.1109/TGRS.2011.2159802 | 
| 16 | DU Y L ,  YIN J J ,  TAN S R , et al.  A numerical study of roughness scale effects on ocean radar scattering using the second-order SSA and the moment method[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 58 (10): 6874- 6887. doi: 10.1109/TGRS.2020.2977368 | 
| 17 | 杜延磊. 随机粗糙海面微波散射/辐射的仿真与分析: 解析近似模型和数值方法[D]. 北京: 中国科学院遥感与数字地球研究所, 2019. | 
| DU Y L. Simulations and analysis of microwave scattering and emission from randomly rough ocean surfaces: analytic approximate models and numerical methods[D]. Beijing: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 2019. | |
| 18 | 杜延磊, 高帆, 刘涛, 等. 基于数值仿真的X波段极化SAR海杂波统计建模与特性分析[J]. 系统工程与电子技术, 2021, 43 (10): 2742- 2755. | 
| DU Y L , GAO F , LIU T , et al. Statistical modeling and cha-racteristic analysis of polarimetric SAR sea clutter at X-band based on numerical simulations[J]. Systems Engineering and Electronics, 2021, 43 (10): 2742- 2755. | |
| 19 | KUDRYAVTSEV V , HAUSER D , CAUDAL G , et al. A semi-empirical model of the normalized radar cross-section of the sea surface-1. Background model[J]. Journal of Geophys Res-Oceans, 2003, (3): 1- 24. | 
| 20 | DU Y L ,  YANG J ,  YANG X F , et al.  Electromagnetic scattering and emission from large rough surfaces with multiple elevations using the MLSD-SMCG method[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 59 (7): 5393- 5406. doi: 10.1109/TGRS.2020.3016997 | 
| 21 | DU Y L ,  TSANG L .  Accurate calculations of emissivities of polar ocean surfaces between 0.5 and 2 GHz using an NIBC/Nystrom/SMCG method[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 58 (4): 2732- 2744. doi: 10.1109/TGRS.2019.2954886 | 
| 22 | VORONOVICH A G ,  ZAVOROTNY V U .  Full-polarization modeling of monostatic and bistatic radar scattering from a rough sea surface[J]. IEEE Trans.on Antennas and Propagation, 2014, 62 (3): 1362- 1371. doi: 10.1109/TAP.2013.2295235 | 
| 23 | LI J X , ZHANG M , ZHAO Y , et al. Efficient numerical full-polarized facet-based model for EM scattering from rough sea surface within a wide frequency range[J]. Remote Sensing, 2019, 11 (1): 1- 18. | 
| 24 | JOHNSON J T .  A study of ocean-like surface thermal emission and reflection using Voronovich's small slope approximation[J]. IEEE Trans.on Geoscience and Remote Sensing, 2005, 43 (2): 306- 314. doi: 10.1109/TGRS.2004.841480 | 
| 25 | VORONOVICH A .  Small-slope approximation for electromagnetic-wave scattering at a rough interface of dielectric half-spaces[J]. Wave Random Media, 1994, 4 (3): 337- 367. doi: 10.1088/0959-7174/4/3/008 | 
| 26 | LIU T ,  YANG Z Y ,  MARINO A , et al.  Robust CFAR detector based on truncated statistics for polarimetric synthetic aperture radar[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 58 (9): 6731- 6747. doi: 10.1109/TGRS.2020.2979252 | 
| 27 | 郭立新, 王蕊, 吴振森. 随机粗糙面散射的基本理论与方法[M]. 北京: 科学出版社, 2010. | 
| GUO L X , WANG R , WU Z S . Basic theory and method of random rough surface scattering[M]. Beijing: Science Press, 2010. | |
| 28 | 丁昊, 董云龙, 刘宁波, 等. 海杂波特性认知研究进展与展望[J]. 雷达学报, 2016, 5 (5): 499- 516. | 
| DING H , DONG Y L , LIU N B , et al. Overview and prospects of research on sea clutter property cognition[J]. Journal of Radars, 2016, 5 (5): 499- 516. | |
| 29 | LIU T ,  HUANG G M ,  WANG X S , et al.  Statistics of the polarimetric Weibull-distributed electromagnetic wave[J]. IEEE Trans.on Antennas and Propagation, 2009, 57 (10): 3232- 3248. doi: 10.1109/TAP.2009.2028597 | 
| 30 | 刘涛, 黄高明, 王雪松, 等. Weibull分布随机波的瞬态极化统计分析——相同形状参数情形[J]. 物理学报, 2009, 58 (5): 3140- 3153. | 
| LIU T , HUANG G M , WANG X S , et al. Statistics of the instantaneous polarization in Weibull-distributed fields-the same shape parameter case[J]. Acta Physica Sinica, 2009, 58 (5): 3140- 3153. | |
| 31 | DENG X P ,  LOPEZ-MARTINEZ C ,  CHEN J S , et al.  Statistical modeling of polarimetric SAR data: a survey and challenges[J]. Remote Sens-Basel, 2017, 9 (4): 348. doi: 10.3390/rs9040348 | 
| 32 | DENG X P ,  LOPEZ-MARTINEZ C ,  VARONA E M .  A Physical analysis of polarimetric SAR data statistical models[J]. IEEE Trans.on Geoscience and Remote Sensing, 2016, 54 (5): 3035- 3048. doi: 10.1109/TGRS.2015.2510399 | 
| 33 | ANFINSEN S N ,  ELTOFT T .  Application of the matrix-variate Mellin transform to analysis of polarimetric radar images[J]. IEEE Trans.on Geoscience and Remote Sensing, 2011, 49 (6): 2281- 2295. doi: 10.1109/TGRS.2010.2103945 | 
| 34 | NICOLAS J M . Introduction to second kind statistics: application of log-moments and Log-cumulants to SAR image law analysis[J]. Traitement du Signal, 2002, 3 (3): 139- 167. | 
| 35 | BOMBRUN L, ANFINSEN S N, HARANT O. A complete coverage of log-cumulant space in terms of distributions for polarimetric SAR data[C]//Proc. of the International Workshop on Science & Applications of SAR Polarimetry & Polarimetric Interferometry, 2011: 1-8. | 
| 36 | LIU T , CUI H G , MAO T , et al. Modeling multilook polarimetric SAR images with heavy-tailed Rayleigh distribution and novel estimation based on matrix log-cumulants[J]. Science China-information Sciences, 2013, 56 (6): 1- 14. | 
| 37 | LIU T ,  ZHANG J F ,  GAO G , et al.  CFAR ship detection in polarimetric synthetic aperture radar images based on whitening filter[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 58 (1): 58- 81. doi: 10.1109/TGRS.2019.2931353 | 
| 38 | 刘宁波, 董云龙, 王国庆, 等. X波段雷达对海探测试验与数据获取[J]. 雷达学报, 2019, 8 (5): 656- 667. | 
| LIU N B , DONG Y L , WANG G Q , et al. Sea-detecting X-band radar and data acquisition program[J]. Journal of Radars, 2019, 8 (5): 656- 667. | |
| 39 | 刘宁波, 丁昊, 黄勇, 等. X波段雷达对海探测试验与数据获取年度进展[J]. 雷达学报, 2021, 10 (1): 173- 182. | 
| LIU N B , DING H , HUANG Y , et al. Annual progress of the sea-detecting X-band radar and data acquisition program[J]. Journal of Radars, 2021, 10 (1): 173- 182. | 
| [1] | Hanyi HUANG, Shiyou HU, Shenglong GUO, Shanjun LI, Qin SHU. Sea surface micro-moving target recognition based on sparse decomposition [J]. Systems Engineering and Electronics, 2023, 45(4): 1016-1023. | 
| [2] | Junling ZHANG, Mei DONG, Baixiao CHEN. Sea clutter suppression algorithm based on tunable Q-factor wavelet transform [J]. Systems Engineering and Electronics, 2023, 45(2): 343-351. | 
| [3] | Yanling SHI, Lei WANG, Junhao LI. CFAR detection for small targets on sea surface based on singular value decomposition in projection space [J]. Systems Engineering and Electronics, 2022, 44(2): 512-519. | 
| [4] | Chunling XUE, Fei CAO, Qing SUN, Jianqiang QIN, Xiaowei FENG. Sea-surface weak target detection based on multi-feature information fusion [J]. Systems Engineering and Electronics, 2022, 44(11): 3338-3345. | 
| [5] | Weiqiang YU, Fei WANG, Ping SUN, Jianjiang ZHOU, Jun CHEN. RF stealth optimization of airborne radar signal parametersunder clutter background [J]. Systems Engineering and Electronics, 2021, 43(11): 3194-3201. | 
| [6] | Yanlei DU, Fan GAO, Tao LIU, Jian YANG. Statistical modeling and characteristic analysis of polarimetric SAR sea clutter at X-band based on numerical simulations [J]. Systems Engineering and Electronics, 2021, 43(10): 2742-2755. | 
| [7] | Sainan SHI, Zeyuan DONG, Jing YANG, Chunjiao YANG. Sea-surface small target detection based on autonomic learning of time-frequency graph [J]. Systems Engineering and Electronics, 2021, 43(1): 33-41. | 
| [8] | Xin LI, Xiaoyun XIA, Yushi ZHANG, Penglang SHUI, Jinpeng ZHANG. Modified reflectivity model of UHF-band sea clutter at low grazing angle [J]. Systems Engineering and Electronics, 2020, 42(5): 1035-1040. | 
| [9] | Hai LI, Zhixin LIU, Weijie CHENG, Zibo ZHUANG, Yi FAN. Low-altitude wind shear wind speed estimation method based on MBMC under sea clutter [J]. Systems Engineering and Electronics, 2020, 42(11): 2481-2487. | 
| [10] | Ziwei DONG, Jun SUN, Jingming SUN, Meiyan PAN. Marine weak moving target detection based on sparse dictionary learning [J]. Systems Engineering and Electronics, 2020, 42(1): 30-36. | 
| [11] | SHI Yanling, LIN Yufeng, LIANG Dandan. Subband segmented ANMF detector in non-stationary sea clutter [J]. Systems Engineering and Electronics, 2018, 40(4): 782-789. | 
| [12] | ZHAO Wenjing, JIN Minglu, LIU Wenlong. Modified median matrix detection method for sea clutter environment [J]. Systems Engineering and Electronics, 2018, 40(10): 2173-2179. | 
| [13] | XU Xinyu, ZHANG Yushi, LI Xin, LI Shanbin, LI Huiming. Influence of sea condition on the temporal correlation properties of UHF band sea clutter [J]. Systems Engineering and Electronics, 2017, 39(6): 1203-1207. | 
| [14] | SHI Sainan, SHUI Penglang, YANG Chunjiao, XU Shuwen. Radar target detection based on spatial correlation of inverse-Gaussian texture [J]. Systems Engineering and Electronics, 2017, 39(10): 2215-2220. | 
| [15] | GUO Yue-yu, WEI Yin-sheng, XU Rong-qing, LU Yao-bing. Geometry design of two-dimensional non-filled array for multimode separation in skywave radar [J]. Systems Engineering and Electronics, 2016, 38(9): 2033-2039. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||