Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (1): 33-41.doi: 10.3969/j.issn.1001-506X.2021.01.05
Previous Articles Next Articles
Sainan SHI1(), Zeyuan DONG1(
), Jing YANG1(
), Chunjiao YANG2(
)
Received:
2020-04-03
Online:
2020-12-25
Published:
2020-12-30
CLC Number:
Sainan SHI, Zeyuan DONG, Jing YANG, Chunjiao YANG. Sea-surface small target detection based on autonomic learning of time-frequency graph[J]. Systems Engineering and Electronics, 2021, 43(1): 33-41.
1 |
YAN K , BAI Y , WU H C , et al. Robust target detection within sea clutter based on graphs[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 57 (9): 7093- 7103.
doi: 10.1109/TGRS.2019.2911451 |
2 |
SHI S N , LIANG X , SHUI P L , et al. Low-velocity small target detection with Doppler-guided retrospective filter in high-resolution radar at fast scan mode[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 57 (11): 8937- 8953.
doi: 10.1109/TGRS.2019.2923790 |
3 |
赵文静, 金明录, 刘文龙. 海杂波环境下改进的中值矩阵检测方法[J]. 系统工程与电子技术, 2018, 40 (10): 2173- 2179.
doi: 10.3969/j.issn.1001-506X.2018.10.03 |
ZHAO W J , JIN M L , LIU W L . Modified median matrix detection method for sea clutter environment[J]. Systems Engineering and Electronics, 2018, 40 (10): 2173- 2179.
doi: 10.3969/j.issn.1001-506X.2018.10.03 |
|
4 | LI D C , SHUI P L . Floating small target detection in sea clutter via normalized Doppler power spectrum[J]. IET Radar, Sonar & Navigation, 2016, 10 (4): 699- 706. |
5 | 时艳玲, 林毓峰, 梁丹丹. 非平稳海杂波背景下子带分段ANMF检测器[J]. 系统工程与电子技术, 2018, 40 (4): 782- 789. |
SHI Y L , LIN Y F , LIANG D D . Subband segmented ANMF detector in non-stationary sea clutter[J]. Systems Engineering and Electronics, 2018, 40 (4): 782- 789. | |
6 |
HU J , TUNG W W , GAO J B . Detection of low observable targets with sea clutter by structure function based multifractal analysis[J]. IEEE Trans.on Antennas Propagation, 2006, 54 (1): 136- 143.
doi: 10.1109/TAP.2005.861541 |
7 |
LI Y , YANG Y H , ZHU X Y . Target detection in sea clutter based on multifractal characteristics after empirical mode decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (9): 1547- 1551.
doi: 10.1109/LGRS.2017.2721463 |
8 | 刘宁波, 黄勇, 关键, 等. 实测海杂波频域分形特性分析[J]. 电子与信息学报, 2012, 34 (4): 929- 935. |
LIU N B , HUANG Y , GUAN J , et al. Fractal analysis of real sea clutter in frequency domain[J]. Journal of Electronics & Information Technology, 2012, 34 (4): 929- 935. | |
9 |
SHUI P L , LI D C , XU S W . Tri-feature-based detection of floating targets in sea clutter[J]. IEEE Trans.on Aerospace and Electronic Systems,, 2014, 50 (2): 1416- 1430.
doi: 10.1109/TAES.2014.120657 |
10 |
SHUI P L , GUO Z X , SHI S N . Feature-compression-based detection of sea-surface small targets[J]. IEEE Access, 2020, 8, 8371- 8385.
doi: 10.1109/ACCESS.2019.2962793 |
11 | XU S W , ZHENG J B , PU J , et al. Sea-surface floating small target detection based on polarization features[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (10): 1505- 1509. |
12 |
GU T C . Detection of small floating targets on the sea surface based on multi-features and principal component analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17 (5): 809- 813.
doi: 10.1109/LGRS.2019.2935262 |
13 |
SHI S N , SHUI P L . Sea-surface floating small target detection by one-class classifier in time-frequency feature space[J]. IEEE Trans.on Geoscience and Remote Sensing, 2018, 56 (11): 6395- 6411.
doi: 10.1109/TGRS.2018.2838260 |
14 | 周龙, 韦素媛, 崔忠马, 等. 基于深度学习的复杂背景雷达图像多目标检测[J]. 系统工程与电子技术, 2019, 41 (6): 1258- 1264. |
ZHOU L , WEI S Y , CUI Z M , et al. Multi-objective detection of complex background radar image based on deep learning[J]. Systems Engineering and Electronics, 2019, 41 (6): 1258- 1264. | |
15 | 徐雅楠, 刘宁波, 丁昊, 等. 利用CNN的海上目标探测背景分类方法[J]. 电子学报, 2019, 47 (12): 2505- 2513. |
XU Y N , LIU N B , DING H , et al. Background classification method for marine target detection based on CNN[J]. Acta Electronic Sinica, 2019, 47 (12): 2505- 2513. | |
16 | DARZIKOLAEI M A, EBRAHIMZADE A, GHOLAMI E. Classification of radar clutters with artificial neural network[C]//Proc.of the 2nd International Conference on Knowledge-Based Engineering and Innovation, 2015: 577-581. |
17 | LI G Q, SONG Z Y, FU Q. Small boat detection via time-frequency analysis and densenet[C]//Proc.of the IEEE 4th International Conference on Signal and Image Processing, 2019: 410-414. |
18 |
MACHADO F J R , BACALLAO V J . Improved shape parameter estimation in K clutter with neural networks and deep learning[J]. International Journal of Interactive Multimedia and Artificial Intelligence, 2016, 3 (7): 96- 103.
doi: 10.9781/ijimai.2016.3714 |
19 |
LI Y Z , XIE P C , TANG Z S , et al. SVM-based sea-surface small target detection: a false-alarm-rate-controllable approach[J]. IEEE Geoscience Remote Sensing Letters, 2019, 16 (8): 1225- 1229.
doi: 10.1109/LGRS.2019.2894385 |
20 | 苏宁远, 陈小龙, 关键, 等. 基于卷积神经网络的海上微动目标检测与分类方法[J]. 雷达学报, 2018, 7 (5): 565- 574. |
SU N Y , CHEN X L , GUAN J , et al. Detection and classification of maritime target with micro-motion based on CNNs[J]. Journal of Radars, 2018, 7 (5): 565- 574. | |
21 | SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2015. |
22 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
23 | SZEGEDY C, IOFFE S, VANHOUCKE V. Inception-v4, inception-resnet and the impact of residual connections on learning[C]//Proc.of the AAAI 31st Conference on Artificial Intelligence, 2016. |
24 | CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1800-1807. |
25 | WANG N, YEUNG D Y. Learning a deep compact image representation for visual tracking[C]//Proc.of the 26th International Conference on Neural Information Processing Systems, 2013: 809-817. |
26 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2818-2826. |
27 |
PAN S J , YANG Q . A survey on transfer learning[J]. IEEE Trans.on Knowledge and Data Engineering, 2010, 22, 1345- 1359.
doi: 10.1109/TKDE.2009.191 |
28 | WANG J D, CHEN Y Q, YU H, et al. Easy transfer learning by exploiting intra-domain structures[C]//Proc.of the IEEE International Conference on Multimedia and Expo, 2019: 1210-1215. |
29 | Cognitive Systems Laboratory, McMaster University, Canada. The IPIX radar database[EB/OL].[2020-06-11].http://soma.mcmaster.ca//ipix.php. |
[1] | Yu XIAO, Zhenghong DENG, Zhan ZHANG. Waveform design based on two-stage mutual information for multi-target detection [J]. Systems Engineering and Electronics, 2022, 44(9): 2736-2742. |
[2] | Liru YANG, Yongxiang LIU, Wei YANG. Radar clutter amplitude statistical model selection based on transfer learning [J]. Systems Engineering and Electronics, 2022, 44(8): 2457-2467. |
[3] | Xiang LIU, Tianyao HUANG, Yimin LIU. Distributed target detection for frequency agile radars [J]. Systems Engineering and Electronics, 2022, 44(6): 1833-1838. |
[4] | Jingming SUN, Shengkang YU, Jun SUN. Radar small sample target recognition method based on meta learning and its improvement [J]. Systems Engineering and Electronics, 2022, 44(6): 1839-1845. |
[5] | Xiaofeng ZHAO, Yebin XU, Fei WU, Jiahui NIU, Wei CAI, Zhili ZHANG. Ground infrared target detection method based on global sensing mechanism [J]. Systems Engineering and Electronics, 2022, 44(5): 1461-1467. |
[6] | Wenxiao WEI, Jieyu LIU, Qiang SHEN, Cheng LI. Feature fusion small target detection algorithm based on human eye view-point map [J]. Systems Engineering and Electronics, 2022, 44(4): 1120-1127. |
[7] | Li HE, Liang SHEN, Hui LI, Zhuang WANG, Wenquan TANG. Survey on policy reuse in reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(3): 884-899. |
[8] | Tao WU, Lunwen WANG, Jingcheng ZHU. Camouflage image segmentation based on transfer learning and attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(2): 376-384. |
[9] | Yanling SHI, Lei WANG, Junhao LI. CFAR detection for small targets on sea surface based on singular value decomposition in projection space [J]. Systems Engineering and Electronics, 2022, 44(2): 512-519. |
[10] | Xiaoya JIA, Hongqiao WANG, Yadan YANG, Zhongma CUI, Bin XIONG. Anchor free SAR image ship target detection method based on the YOLO framework [J]. Systems Engineering and Electronics, 2022, 44(12): 3703-3709. |
[11] | Chunling XUE, Fei CAO, Qing SUN, Jianqiang QIN, Xiaowei FENG. Sea-surface weak target detection based on multi-feature information fusion [J]. Systems Engineering and Electronics, 2022, 44(11): 3338-3345. |
[12] | Tao JIN, Di ZHU, Jieying HE, Wenyu WANG. Study on the characteristics of high terahertz band atmospheric background radiation observed from satellites [J]. Systems Engineering and Electronics, 2022, 44(10): 3003-3011. |
[13] | Yonggang LI, Weigang ZHU, Qiongnan HUANG, Yuntao LI, Yonghua HE. Near-shore ship target detection with SAR images in complex background [J]. Systems Engineering and Electronics, 2022, 44(10): 3096-3103. |
[14] | Shufeng GONG, Weijun LONG, De BEN, Minghai PAN. Adaptive fuzzy CFAR detection fusion algorithm for netted radar [J]. Systems Engineering and Electronics, 2022, 44(1): 100-107. |
[15] | Wei YANG, Yongxiang LIU, Yaowen FU, Xiang LI. Robust radar target detection method based on continuous belief function theory [J]. Systems Engineering and Electronics, 2021, 43(9): 2463-2469. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||