Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (11): 3402-3410.doi: 10.12305/j.issn.1001-506X.2023.11.05
• Electronic Technology • Previous Articles Next Articles
Hongfei LIAN1, Jiamin LONG2,3, Xueyao HU2,3,4, Yanwen JIANG1, Dongsheng LI1, Hongqi FAN1,*
Received:
2022-08-10
Online:
2023-10-25
Published:
2023-10-31
Contact:
Hongqi FAN
CLC Number:
Hongfei LIAN, Jiamin LONG, Xueyao HU, Yanwen JIANG, Dongsheng LI, Hongqi FAN. Multi domain joint modulation waveform for automotive radar[J]. Systems Engineering and Electronics, 2023, 45(11): 3402-3410.
Table 2
Simulation target parameter estimation results"
参数 | 目标1 | 目标2 | 目标3 | 目标4 |
真实距离/m | 10 | 20 | 30 | 50 |
真实速度/(m·s-1) | 5 | -15 | 30 | 45 |
真实角度/(°) | 5 | 10 | 15 | 20 |
距离估计/m | 10.01 | 20.04 | 30.05 | 50.1 |
模糊速度估计/(m·s-1) | 5.01 | 4.46 | -8.93 | 6.09 |
奇序列二维谱峰点相位/rad | 2.15 | -2.97 | -1.56 | 1.45 |
偶序列二维谱峰点相位/rad | -3.12 | 0.41 | -2.03 | -2.40 |
模糊数估计 | 0 | -1 | 1 | 2 |
速度估计/(m·s-1) | 5.01 | -15.02 | 30.03 | 45.05 |
角度估计/(°) | 5.0 | 10.08 | 14.99 | 20.02 |
1 |
BIALER O , JONAS A , TIRER T . Super resolution wide aperture automotive radar[J]. IEEE Sensors Journal, 2021, 21 (16): 17846- 17858.
doi: 10.1109/JSEN.2021.3085677 |
2 |
ENGELS F , HEIDENREICH P , WINTERMANTEL M , et al. Automotive radar signal processing: research directions and practical challenges[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15 (4): 865- 878.
doi: 10.1109/JSTSP.2021.3063666 |
3 |
LIN Y C , LEE T S , PAN Y H , et al. Low-complexity high-resolution parameter estimation for automotive MIMO radars[J]. IEEE Access, 2020, 8, 16127- 16138.
doi: 10.1109/ACCESS.2019.2926413 |
4 |
SUN S , ZHANG Y D . 4D automotive radar sensing for autonomous vehicles: a sparsity-oriented approach[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15 (4): 879- 891.
doi: 10.1109/JSTSP.2021.3079626 |
5 |
BOSE A , TANG B , SOLTANALIAN M , et al. Mutual interference mitigation for multiple connected automotive radar systems[J]. IEEE Trans.on Vehicular Technology, 2021, 70 (10): 11062- 11066.
doi: 10.1109/TVT.2021.3108714 |
6 |
PATOLE S M , TORLAK M , WANG D , et al. Automotive radars: a review of signal processing techniques[J]. IEEE Signal Processing Magazine, 2017, 34 (2): 22- 35.
doi: 10.1109/MSP.2016.2628914 |
7 |
SCHWARZ D , RIESE N , DORSCH I , et al. System performance of a 79 GHz high-resolution 4D imaging MIMO radar with 1728 virtual channels[J]. IEEE Journal of Microwaves, 2022, 2 (4): 637- 647.
doi: 10.1109/JMW.2022.3196454 |
8 |
MODAS A , SANCHEZ-MATILLA R , FROSSARD P , et al. Toward robust sensing for autonomous vehicles: an adversarial perspective[J]. IEEE Signal Processing Magazine, 2020, 37 (4): 14- 23.
doi: 10.1109/MSP.2020.2985363 |
9 | SUN Y L, BAUDUIN M, BOURDOUX A. Enhancing unambiguous velocity in Doppler-division multiplexing MIMO radar[C]//Proc. of the 18th European Radar Conference, 2022: 493-496. |
10 |
BARAL A B , TORLAK M . Joint doppler frequency and direction of arrival estimation for TDM MIMO automotive radars[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15 (4): 980- 995.
doi: 10.1109/JSTSP.2021.3073572 |
11 |
BECHTER J , ROOS F , WALDSCHMIDT C . Compensation of motion-induced phase errors in TDM MIMO radars[J]. IEEE Microwave and Wireless Components Letters, 2017, 27 (12): 1164- 1166.
doi: 10.1109/LMWC.2017.2751301 |
12 | ZHANG Y , ZHU C K , DONG S Q , et al. 3-D motion imaging in a multipath coordinate space based on a TDM-MIMO radar sensor[J]. IEEE Trans.on Microwave Theory and Techniques, 2020, 61 (11): 4642- 4651. |
13 |
HU X Y , LI Y , LU M , et al. A multi-carrier-frequency random-transmission chirp sequence for TDM MIMO automotive radar[J]. IEEE Trans.on Vehicular Technology, 2019, 68 (4): 3672- 3685.
doi: 10.1109/TVT.2019.2900357 |
14 |
LI X R , WANG X , YANG Q , et al. Signal processing for TDM MIMO FMCW millimeter-wave radar sensors[J]. IEEE Access, 2021, 9, 167959- 167971.
doi: 10.1109/ACCESS.2021.3137387 |
15 | WALDSCHMIDT C , HASCH J , MENZEL W . Automotive radar—from first efforts to future systems[J]. IEEE Journal of Microwaves, 2022, 1 (1): 135- 148. |
16 | KRONAUGE M, SCHROEDER C, ROHLING H. Radar target detection and Doppler ambiguity resolution[C]//Proc. of the 11th International Radar Symposium, 2010. |
17 | 王元恺. 调频序列汽车雷达信号处理方法研究[D]. 南京: 南京理工大学, 2018. |
WANG Y K. Research on signal processing method for chirp squeeze automotive radar[D]. Nanjing: Nanjing University of Science and Technology, 2018. | |
18 | 陈盼. 频扫FMCW雷达低慢小目标检测方法研究[D]. 西安: 西安电子科技大学, 2021. |
CHEN P. Research of LSS-target detection method based on frequency-scanning FMCW radar[D]. Xi'an: Xidian University, 2021. | |
19 | 冯昆. 毫米波雷达混合波形与目标检测算法研究[D]. 广州: 广东工业大学, 2021. |
FENG K. Research on hybrid waveform and target detection algorithm of millimeter wave radar[D]. Guangdong: Guangdong University of Technology, 2021. | |
20 |
KRONAUGE M , ROHLING H . New chirp sequence radarwaveform[J]. IEEE Trans.on Aerospace and Electronic Systems, 2014, 50 (4): 2870- 2877.
doi: 10.1109/TAES.2014.120813 |
21 | ROHLING H, KRONAUGE M. New radar waveform based on a chirp sequence[C]//Proc. of the International Radar Conference, 2014. |
22 | PLŠIČÍK R, DANKO M. Introduction to using mmWave Radar development board AWR1843[C]//Proc. of the ELEKTRO, 2022. |
23 |
GENNARELLI G , NOVIELLO C , LUDENO G , et al. 24 GHz FMCW MIMO radar for marine target localization: a feasibility study[J]. IEEE Access, 2022, 10, 68240- 68256.
doi: 10.1109/ACCESS.2022.3186052 |
24 |
DORIS K , FILIPPI A , JANSEN F . Reframing fast-chirp FMCW transceivers for future automotive radar: the pathway to higher resolution[J]. IEEE Solid-State Circuits Magazine, 2022, 14 (2): 44- 55.
doi: 10.1109/MSSC.2022.3167344 |
25 |
TAN K , YIN T T , RUAN H N , et al. Learning approach to FMCW radar target classification with feature extraction from wave physics[J]. IEEE Trans.on Antennas and Propagation, 2022, 70 (8): 6287- 6299.
doi: 10.1109/TAP.2022.3175716 |
26 |
KINGERY A , SONG D Z . Improving ego-velocity estimation of low-cost Doppler radars for vehicles[J]. IEEE Robotics and Automation Letters, 2022, 7 (4): 9445- 9452.
doi: 10.1109/LRA.2022.3191247 |
27 |
LINDENMAIER L , ARADI S , BÉCSI T , et al. GM-PHD filter based sensor data fusion for automotive frontal perception system[J]. IEEE Trans.on Vehicular Technology, 2022, 71 (7): 7215- 7229.
doi: 10.1109/TVT.2022.3171040 |
28 |
RAGONESE E , PAPOTTO G , NOCERA C , et al. CMOS automotive radar sensors: mm-wave circuit design challenges[J]. IEEE Trans.on Circuits and Systems Ⅱ: Express Briefs, 2022, 69 (6): 2610- 2616.
doi: 10.1109/TCSII.2022.3170317 |
29 |
HAGGAG K , LANGE S , PFEIFER T , et al. A credible and robust approach to ego-motion estimation using an automotive radar[J]. IEEE Robotics and Automation Letters, 2022, 7 (3): 6020- 6027.
doi: 10.1109/LRA.2022.3162644 |
30 | SANG T H , TSENG K Y , CHIEN F T , et al. Deep-learning-based velocity estimation for FMCW radar with random pulse position modulation[J]. IEEE Sensors Letters, 2022, 6 (3): 7000804. |
[1] | Yuhang HAO, Wei JIANG, Zengfu WANG, Hua LAN, Ting YONG, Quan PAN. Distributed MIMO sky-wave over-the-horizon-radar simulation system [J]. Systems Engineering and Electronics, 2023, 45(7): 1981-1989. |
[2] | Yuzhuo WANG, Shengqi ZHU, Ximin LI, Lan LAN. Range ambiguous clutter suppression for FDA MIMO bistatic radar with main lobe correction [J]. Systems Engineering and Electronics, 2022, 44(5): 1483-1494. |
[3] | Sheng CHEN, Yongbo ZHAO, Xiaojiao PANG, Yili HU, Chenghu CAO. Beam space refined maximum likelihood algorithm for VHF MIMO radar [J]. Systems Engineering and Electronics, 2022, 44(5): 1520-1526. |
[4] | Xiaotong ZHAO, Jianjiang ZHOU. Improved MUSIC algorithm for MIMO radar with low intercept [J]. Systems Engineering and Electronics, 2022, 44(2): 490-497. |
[5] | Junkui TANG, Zheng LIU, Rong XIE, Bo ZENG. Optimal design method for sparse array of MIMO radar [J]. Systems Engineering and Electronics, 2022, 44(12): 3661-3666. |
[6] | Zhiyuan YOU, Guoping HU, Hao ZHOU. Bistatic nested MIMO radar based on redundant element optimization joint estimation method of target DOD and DOA [J]. Systems Engineering and Electronics, 2022, 44(12): 3696-3702. |
[7] | Junpeng SHI, Fangqing WEN, Lin AI, Gong ZHANG, Zhenghui GONG. Angle estimation for bistatic MIMO radar with spatially colored noise [J]. Systems Engineering and Electronics, 2021, 43(6): 1477-1485. |
[8] | Yang ZHANG, Yinsheng WEI, Lei YU. Joint suppression method of mainlobe multiple false targets jamming transceriver [J]. Systems Engineering and Electronics, 2021, 43(6): 1486-1496. |
[9] | Tao PU, Ningning TONG, Weike FENG, Liang FANG, Xiaoyang GAO. Extended target high resolution imaging algorithm for MIMO radar based on block sparse matrix recovery [J]. Systems Engineering and Electronics, 2021, 43(3): 647-655. |
[10] | Zhimei HAO, Jinping SUN, Meifang LUO. Waveform cluster design of low probability of intercept based on compound frequency coding [J]. Systems Engineering and Electronics, 2021, 43(11): 3137-3143. |
[11] | Chunqi JIANG, Na'e ZHENG, Zong ZUO, Sheng WANG, Xiang CHEN. Antenna selection of distributed MIMO radar on target tracking with key target highlighted [J]. Systems Engineering and Electronics, 2021, 43(10): 2860-2868. |
[12] | Zhengjie LI, Junwei XIE, Haowei ZHANG, Zhaojian ZHANG. Joint power and bandwidth allocation algorithm based on collocated MIMO radar [J]. Systems Engineering and Electronics, 2020, 42(5): 1041-1049. |
[13] | ZHANG Bo, DAI Fengzhou, FENG Dazheng. Transmit beampattern design for conformal MIMO radar based on virtual aperture projection [J]. Systems Engineering and Electronics, 2019, 41(7): 1489-1495. |
[14] | PANG Yucai, LIU Song. Optimization of MIMO radar sparse array based on modified artificial bee colony [J]. Systems Engineering and Electronics, 2018, 40(5): 1026-1030. |
[15] | YANG Kang, WEN Fangqing, HUANG Dongmei, ZHANG Lei, WANG Ke. Real-value-based trilinear decomposition based direction estimation algorithm for bistatic MIMO radar in the presence of mutual coupling [J]. Systems Engineering and Electronics, 2018, 40(2): 314-321. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||