Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (3): 1030-1035.doi: 10.12305/j.issn.1001-506X.2022.03.36
• Communications and Networks • Previous Articles Next Articles
Hengyan LIU1,*, Limin ZHANG1, Wenjun YAN1, Zhaogen ZHONG1, Qing LING1, Xiaojun LIANG2
Received:2021-01-06
Online:2022-03-01
Published:2022-03-10
Contact:
Hengyan LIU
CLC Number:
Hengyan LIU, Limin ZHANG, Wenjun YAN, Zhaogen ZHONG, Qing LING, Xiaojun LIANG. LDPC decoding based on WBP-CNN algorithm[J]. Systems Engineering and Electronics, 2022, 44(3): 1030-1035.
| 1 |
GALLAGE R G . Low-density parity-check codes[J]. IRE Trans.on Information Theory, 1962, 8 (1): 21- 28.
doi: 10.1109/TIT.1962.1057683 |
| 2 |
RICHARDSON T J , URBANKER L . The capacity of low-density paritycheck codes under message-passing decoding[J]. IEEE Trans.on Information Theory, 2001, 47 (2): 599- 618.
doi: 10.1109/18.910577 |
| 3 | 姚玲, 张帆. 5G多径信道下基于BP算法的LDPC编译码研究[J]. 绥化学院学报, 2019, 39 (6): 148- 151. |
| YAO L , ZHANG F . Research on LDPC encoding and decoding based on BP algorithm under 5G multipath channel[J]. Journal of Suihua University, 2019, 39 (6): 148- 151. | |
| 4 |
SHARMA S K , CHATZINOTAS S , OTTERSTEN B . SNR estimation for multi-dimensional cognitive receiver under correlated channel/ noise[J]. IEEE Trans.on Wireless Communications, 2013, 12 (12): 6392- 6405.
doi: 10.1109/TWC.2013.103113.130523 |
| 5 |
HAJIMIRI A , LEE T H . A general theory of phase noise in electrical oscillators[J]. IEEE Journal of Solid-State Circuits, 1998, 33 (2): 179- 194.
doi: 10.1109/4.658619 |
| 6 | SAEED S T, BRUCE F C, STEPHEN B. On the effects of colored noise on the performance of LDPC codes[C]//Proc. of the IEEE Workshop on Signal Processing Systems Design and Implementation, 2006: 226-231. |
| 7 | 徐鹏, 孔令军, 赵生妹, 等. 基于PD-CNN的Polar码译码算法[J]. 信号处理, 2019, 35 (10): 1652- 1659. |
| XU P , KONG L J , ZHAO S M , et al. A decoding algorithm for Polar codes based on PD-CNN[J]. Journal of Signal Processing, 2019, 35 (10): 1652- 1659. | |
| 8 | 王祥旭, 车书玲, 纪玉晖. 一种有效的局部可修复的构造方法[J]. 西安电子科技大学学报, 2019, 46 (3): 27- 28. |
| WANG X X , CHE S L , JI Y H . Effective construction method for locally repairable codes[J]. Journal of Xidian University, 2019, 46 (3): 27- 28. | |
| 9 | NACHMANI E, BEERY Y, BURSHTEIN D. Learning to decode linear codes using deep learning[C]//Proc. of the 54th Annual Allerton Conference, 2016: 341-346. |
| 10 | NACHMAINI E, MARCIAND E, BURSHTEIN D, et al. RNN decoding of linear block codes[EB/OL]. [2021-01-04]. http://arxiv.org/abs/1702.07560. |
| 11 |
LIU B , XIE Y X , YUAN J H . A deep learning assisted node-classified redundant decoding algorithm for BCH codes[J]. IEEE Trans.on Communications, 2020, 68 (9): 5338- 5449.
doi: 10.1109/TCOMM.2020.3001162 |
| 12 | CAPLAN P , SHIMIZU H , KOBAYSHI S , et al. Cataloging internet resources[J]. The Public Access Computer Systems Review, 1993, 4 (2): 61- 66. |
| 13 | 徐想. 基于深度学习的极化码译码算法研究[D]. 北京: 北京交通大学, 2019. |
| XU X. Study on decoding algorithms of polar codes based on deep learning[D]. Beijing: Beijing Jiaotong University, 2019. | |
| 14 |
LIU X C , ZHANG Y B , CUI R . Variable-node-based dynamic scheduling strategy for belief-propagation decoding of LDPC codes[J]. IEEE Communications Letters, 2015, 19 (2): 147- 150.
doi: 10.1109/LCOMM.2014.2385096 |
| 15 | THI H P, THE C D, XUAN N P, et al. Simplified variable node unit architecture for nonbinary LDPC decoder[C]//Proc. of the IEEE Asia Pacific Conference on Circuits and Systems, 2019: 213-216. |
| 16 | CHYTAS D, PALIOURAS V. Approximate sorting check node processing in non-binary LDPC decoders[C]//Proc. of the IEEE 27th International Conference on Electronics, Circuits and Systems, 2020. |
| 17 | MUHAMMAD A , ANAS P , ASHFAQ A , et al. LDPC check node implementation using reversible logic[J]. Circuits, Devices & Systems, 2019, 13 (4): 443- 455. |
| 18 | 刘向楠. BP算法和WBF算法相结合的LDPC码译码算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. |
| LIU X N. Research on LDPC code decoding algorithm combining BP algorithm and WBF algorithm[D]. Harbin: Harbin Institute of Technology, 2011. | |
| 19 |
HADDADI S , FARHANG M , DERAKHTIAN M . Low-complexity decoding of LDPC codes using reduced-set WBF-based algorithms[J]. Journal on Wireless Communications and Networking, 2020,
doi: 10.1186/s13638-020-01791-5.S |
| 20 |
ZHANG X , JIAO X P , HE Y C , et al. Weighted bit-flipping decoding of LDPC codes with LLR adjustment for MLC flash memories[J]. IEICE Trans.on Fundamentals of Electronics Communications and Computer Sciences, 2019, E102.A (11): 1571- 1574.
doi: 10.1587/transfun.E102.A.1571 |
| 21 | HARITA D, PARGUNA R K. Reliability variance based weighted bit flipping algorithms for LDPC[C]//Proc. of the 9th International Conference on Cloud Computing, Data Science & Engineering, 2019: 593-595. |
| 22 |
KOU Y , LIN S , FOSSORIER M . Low-density parity-check codes based on finite geometries: a rediscovery and new results[J]. IEEE Trans.on Information Theory, 2001, 47 (7): 2711- 2736.
doi: 10.1109/18.959255 |
| 23 | ZHANG K , ZUO W M , CHEN Y J , et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Trans.on Image Processing, 2016, 26 (7): 3142- 3155. |
| 24 |
JANG J W , KWON Y C , LIM H , et al. CNN-based denoising, completion, and prediction of whole-body human-depth images[J]. IEEE Access, 2019, 7, 175842- 175856.
doi: 10.1109/ACCESS.2019.2957862 |
| 25 | 张翔翔. 相关噪声下基于深度学习的卷积码译码器的研究[D]. 北京: 北京邮电大学, 2019. |
| ZHANG X X. Research on convolutional code decoder based on deep learning under correlated noise[D]. Beijing: Beijing University of Posts and Telecommunications, 2019. | |
| 26 | ALEX D , SEMIH Y H , VINCENT P , et al. The capacity achieving distribution for the amplitude constrained additive Gaussian channel: an upper bound on the number of mass points[J]. IEEE Trans.on Information Theory, 2019, 66 (4): 2006- 2022. |
| 27 |
THORSTEN T , HERBERT B . Jarque-Bera test and its competitors for test ingnormality: a power comparison[J]. Journal of Applied Statistics, 2007, 34 (1): 87- 105.
doi: 10.1080/02664760600994539 |
| 28 |
SHARMA S K , CHATZINOTAS S , OTTERSTEN B . SNR estimation for multi-dimensional cognitive receiver under correlated channel/noise[J]. IEEE Trans.on Wireless Communications, 2013, 12 (12): 6392- 6405.
doi: 10.1109/TWC.2013.103113.130523 |
| 29 | DIEDERIK P K, JIMMY L B. Adam: a method for stochastic optimization[C]//Proc. of the International Conference on Learning Representations, 2015. |
| 30 | KIRA K, FLORIAN G, TOBIAS D, et al. Database of channel codes and ML simulation results[EB/OL]. [2021-01-22]. http://www.uni-kl.de/channel-codes. |
| [1] | Caiyun WANG, Yida WU, Jianing WANG, Lu MA, Huanyue ZHAO. SAR image target recognition based on combinatorial optimization convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(8): 2483-2487. |
| [2] | Dong CHEN, Yanwei JU. Ship object detection SAR images based on semantic segmentation [J]. Systems Engineering and Electronics, 2022, 44(4): 1195-1201. |
| [3] | Jingming SUN, Shengkang YU, Jun SUN. Pose sensitivity analysis of HRRP recognition based on deep learning [J]. Systems Engineering and Electronics, 2022, 44(3): 802-807. |
| [4] | Kai SHAO, Miaomiao ZHU, Guangyu WANG. Modulation recognition method based on generative adversarial andconvolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(3): 1036-1043. |
| [5] | Xi ZHANG, Zhengmeng JIN, Yaqin JIANG. Total variation algorithm with depth image priors for image colorization [J]. Systems Engineering and Electronics, 2022, 44(2): 385-393. |
| [6] | Qinzhe LYU, Yinghui QUAN, Minghui SHA, Shuxian DONG, Mengdao XING. Ensemble deep learning-based intelligent classification of active jamming [J]. Systems Engineering and Electronics, 2022, 44(12): 3595-3602. |
| [7] | Bo DAN, Zhequan FU, Shan GAO, Tao JIAN. Full-polarization high resolution range profile recognition technology for sea surface target based on convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(1): 108-116. |
| [8] | Ziyan LIU, Shanshan MA, Jing LIANG, Mingcheng ZHU, Lei YUAN. Attention mechanism based CNN channel estimation algorithm in millimeter-wave massive MIMO system [J]. Systems Engineering and Electronics, 2022, 44(1): 307-312. |
| [9] | Shiyu SHEN, Xiaodong YE, Hao WANG, Shifei TAO. SAR image speckle suppression method based on muti-scale interactive structure convolutional neural network [J]. Systems Engineering and Electronics, 2021, 43(12): 3526-3532. |
| [10] | Yuyuan ZHNAG, Wenjun YAN, Limin ZHANG, Yuan ZHANG. Blind recognition algorithm of serial space-time block code based on convolutional neural network [J]. Systems Engineering and Electronics, 2021, 43(11): 3360-3370. |
| [11] | Yunfei MA, Xisheng JIA, Huajun BAI, Chiming GUO, Shuangchuan WANG. Fault diagnosis of compressed vibration signal based on 1-dimensional CNN with optimized parameters [J]. Systems Engineering and Electronics, 2020, 42(9): 1911-1919. |
| [12] | Zishuo HAN, Chunping WANG, Qiang FU, Yan XU. Ship detection in SAR images based on super dense feature pyramid networks [J]. Systems Engineering and Electronics, 2020, 42(10): 2214-2222. |
| [13] | Kefan ZHU, Jiegui WANG. Low-resolution radar target one-step recognition algorithm based on SCGAN+CNN with a limited training data [J]. Systems Engineering and Electronics, 2020, 42(1): 67-75. |
| [14] | WANG Lunwen, FENG Yanqing, ZHANG Mengbo. Target detection method for optical remote sensing imagery [J]. Systems Engineering and Electronics, 2019, 41(10): 2163-2169. |
| [15] | LUO Chang, WANG Jie, WANG Shiqiang, SHI Tong, REN Weihua. General deep transfer features based high resolution remote scene classification [J]. Systems Engineering and Electronics, 2018, 40(3): 682-691. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||