Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (10): 2214-2222.doi: 10.3969/j.issn.1001-506X.2020.10.09
Previous Articles Next Articles
Zishuo HAN1(), Chunping WANG1,*(
), Qiang FU1(
), Yan XU2(
)
Received:
2019-10-28
Online:
2020-10-01
Published:
2020-09-19
Contact:
Chunping WANG
E-mail:shuo1986andy@126.com;370119128@126.com;love_min627@163.com;hbu_ami@163.com
CLC Number:
Zishuo HAN, Chunping WANG, Qiang FU, Yan XU. Ship detection in SAR images based on super dense feature pyramid networks[J]. Systems Engineering and Electronics, 2020, 42(10): 2214-2222.
Table 2
Comparison of experimental results with different β"
β取值 | Ntotal_target | Ntd | Nfd | Pd/% | Pf/% | F1 |
1 | 1 270 | 1 101 | 169 | 89.37 | 13.31 | 0.880 |
2 | 1 284 | 1 124 | 160 | 91.23 | 12.46 | 0.893 |
3 | 1 289 | 1 135 | 154 | 92.13 | 11.95 | 0.900 |
4 | 1 312 | 1 153 | 159 | 93.59 | 12.12 | 0.906 |
5 | 1 287 | 1 161 | 126 | 94.24 | 9.79 | 0.922 |
6 | 1 271 | 1 074 | 197 | 87.18 | 15.50 | 0.858 |
7 | 1 239 | 1 077 | 162 | 87.42 | 13.07 | 0.872 |
Table 4
Comparison of detection performance with different algorithms"
方法 | Ntotal_target | Ntd | Nfd | Pd/% | Pf/% | F1 | 测试 耗时/s |
FPN | 1 329 | 1 087 | 242 | 88.23 | 18.21 | 0.849 | 0.28 |
Faster R-CNN+ | 1 316 | 1 083 | 233 | 87.91 | 17.71 | 0.850 | 0.22 |
CMF-RCNN | 1 272 | 1 075 | 197 | 87.26 | 15.49 | 0.859 | 0.22 |
SSD | 1 345 | 1 124 | 221 | 91.23 | 16.43 | 0.872 | 0.20 |
SSD+ | 1 353 | 1 147 | 206 | 93.10 | 15.23 | 0.887 | 0.21 |
DFPN | 1 275 | 1 116 | 159 | 90.58 | 12.47 | 0.890 | 0.30 |
本文算法 | 1 287 | 1 161 | 126 | 94.24 | 9.79 | 0.922 | 0.35 |
1 | SHAO J Q, QU C W, LI J W. A performance analysis of convolutional neural network models in SAR target recognition[C]//Proc.of the SAR in Big Data Era: Models, Methods and Applications, 2017. |
2 |
AO W , XU F , LI Y C , et al. Detection and discrimination of ship targets in complex background from spaceborne ALOS-2 SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11 (2): 536- 550.
doi: 10.1109/JSTARS.2017.2787573 |
3 |
WANG C L , BI F K , ZHANG W P , et al. An intensity-space domain CFAR method for ship detection in HR SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (4): 529- 533.
doi: 10.1109/LGRS.2017.2654450 |
4 | LENG X G, JI K F, FAN Q J, et al. A novel adaptive ship detection method for spaceborne SAR imagery[C]//Proc.of the IEEE International Geoscience and Remote Sensing Symposium, 2016. |
5 |
ZHAO Z , JI K F , XING X W , et al. Ship surveillance by integration of space-borne SAR and AIS-review of current research[J]. Journal of Navigation, 2014, 67 (1): 177- 189.
doi: 10.1017/S0373463313000659 |
6 | KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60 (6): 1097- 1105. |
7 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587. |
8 | GIRSHICK R. Fast R-CNN[C]//Proc.of the IEEE International Conference on Computer Vision, 2015: 1440-1448. |
9 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Proc.of the 28th International Conference on Neural Information Processing Systems, 2015: 91-99. |
10 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788. |
11 | ADAM V E. You only look twice: rapid multi-scale object detection in satellite imagery[EB/OL].[2019-8-24]. https://arxiv.org/pdf/1805.09512.pdf. |
12 | JOSEPH R, ALI F. YOLOv3: an incremental Improvement[EB/OL].[2019-8-8]. https://arxiv.org/pdf/1804.02767.pdf. |
13 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proc.of the 14th European Conference on Computer Vision, 2016: 21-37. |
14 | FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[EB/OL].[2019-8-23]. https://arxiv.org/pdf/1701.06659.pdf. |
15 | LIU Y, XU P, ZHANG M H, et al. SAR ship detection using sea-land segmentation-based convolutional neural network[C]//Proc.of the International Workshop on Remote Sensing with Intelligent Processing, 2017. |
16 | COZZOLINO D, MARTINO D G, POGGI G, et al. A fully convolutional neural network for low-complexity single-stage ship detection in sentinel-1 SAR images[C]//Proc.of the IEEE International Geoscience and Remote Sensing Symposium, 2017: 886-889. |
17 | ZHAN C, ZHANG L C, ZHONG Z Z, et al. Deep learning approach in automatic iceberg-ship detection with SAR remote sensing data[EB/OL].[2019-10-9]. https://arxiv.org/ftp/arxiv/papers/1812/1812.07367. |
18 | BELL S, ZITNICK C L, BALA K, et al. Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2874-2883. |
19 | LIN T Y, DOLLAR P, GIRAHICK R, et al. Feature pyramid networks for object detection[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 936-944. |
20 | YANG X , SUN H , FU K , et al. Automatic ship detection in remote sensing images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks[J]. Remote Sensing, 2018, 10 (1): 132. |
21 |
KANG M , JI K F , LENG X G , et al. Contextual region-based convolutional neural network with multilayer fusion for SAR ship detection[J]. Remote sensing, 2017, 9 (8): 860.
doi: 10.3390/rs9080860 |
22 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc.of the IEEE conference on computer vision and pattern recognition, 2016: 770-778. |
23 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proc.of the International Conference on Neural Information Processing System, 2012: 1097-1105. |
24 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-10-9].https://arxiv.org/pdf/1409.1556.pdf. |
25 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolution[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2015. |
26 | GAO H, LIU Z, WEINBERGER K Q, et al. Densely connected convolutional networks[EB/OL].[2019-10-9]. https://arxiv.org/pdf/1608.06993.pdf. |
27 | HU J , SHEN L , ALBANIE S , et al. Squeeze-and-excitation networks[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, accepted, |
28 |
AN Q Z , PAN Z X , YOU H J . Ship detection in Gaofen-3 SAR images based on sea clutter distribution analysis and deep convolutional neural network[J]. Sensors, 2018, 18 (2): 334.
doi: 10.3390/s18020334 |
29 | 杜兰, 刘彬, 王燕, 等. 基于卷积神经网络的SAR图像目标检测算法[J]. 电子与信息学报, 2016, 38 (12): 3018- 3025. |
DU L , LIU B , WANG Y , et al. Target detection method based on convolutional neural network for SAR image[J]. Journal of Electronics & Information Technology, 2016, 38 (12): 3018- 3025. | |
30 | ABADI M, AGARWAL A, BARHAM P, et al. Tensorflow: large-scale machine learning on heterogeneous distributed systems[EB/OL].[2019-10-9]. https://arxiv.org/pdf/1603.04467.pdf. |
31 | 李健伟, 曲长文, 彭书娟, 等. 基于卷积神经网络的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2018, 40 (9): 1953- 1959. |
LI J W , QU C W , PENG S J , et al. Ship detection in SAR images based on convolutional neural network[J]. Systems Engineering and Electronics, 2018, 40 (9): 1953- 1959. | |
32 | 杨龙, 苏娟, 李响. 基于深度卷积神经网络的SAR舰船目标检测[J]. 系统工程与电子技术, 2019, 41 (9): 1990- 1997. |
YANG L , SU J , LI X . Ship detection in SAR images based on deep convolutional neural network[J]. Systems Engineering and Electronics, 2019, 41 (9): 1990- 1997. |
[1] | Tian MIAO, Hongcheng ZENG, He WANG, Jie CHEN. A fast extraction method of flood areas based on iterative threshold segmentation using spaceborne SAR data [J]. Systems Engineering and Electronics, 2022, 44(9): 2760-2768. |
[2] | Caiyun WANG, Yida WU, Jianing WANG, Lu MA, Huanyue ZHAO. SAR image target recognition based on combinatorial optimization convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(8): 2483-2487. |
[3] | Dongning FU, Guisheng LIAO, Yan HUANG, Bangjie ZHANG, Xing WANG. Time-varying narrow-band interference suppression algorithm for SAR based on graph Laplacian embedding [J]. Systems Engineering and Electronics, 2022, 44(6): 1846-1853. |
[4] | Minghui GAI, Su ZHANG, Weitian SUN, Yude NI, Lei YANG. Structural-feature enhancement of SAR targets based on complex value compatible total variation [J]. Systems Engineering and Electronics, 2022, 44(6): 1862-1872. |
[5] | Penghui JI, Dahai DAI, Shiqi XING, Dejun FENG. Dense false moving targets generation method [J]. Systems Engineering and Electronics, 2022, 44(5): 1502-1511. |
[6] | Dong CHEN, Yanwei JU. Ship object detection SAR images based on semantic segmentation [J]. Systems Engineering and Electronics, 2022, 44(4): 1195-1201. |
[7] | Jingming SUN, Shengkang YU, Jun SUN. Pose sensitivity analysis of HRRP recognition based on deep learning [J]. Systems Engineering and Electronics, 2022, 44(3): 802-807. |
[8] | Lei YANG, Su ZHANG, Minghui GAI, Cheng FANG. High-resolution SAR imagery with enhancement of directional structure feature [J]. Systems Engineering and Electronics, 2022, 44(3): 808-818. |
[9] | Hengyan LIU, Limin ZHANG, Wenjun YAN, Zhaogen ZHONG, Qing LING, Xiaojun LIANG. LDPC decoding based on WBP-CNN algorithm [J]. Systems Engineering and Electronics, 2022, 44(3): 1030-1035. |
[10] | Kai SHAO, Miaomiao ZHU, Guangyu WANG. Modulation recognition method based on generative adversarial andconvolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(3): 1036-1043. |
[11] | Xi ZHANG, Zhengmeng JIN, Yaqin JIANG. Total variation algorithm with depth image priors for image colorization [J]. Systems Engineering and Electronics, 2022, 44(2): 385-393. |
[12] | Junjie WANG, Dejun FENG, Weidong HU. Two-dimensional SAR image modulation method based on time-varying materials [J]. Systems Engineering and Electronics, 2022, 44(2): 455-462. |
[13] | Cheng FANG, Huijuan LI, Wen LU, Yumeng SONG, Lei YANG. Multi-feature enhancement algorithm for high resolution SAR based on morphological auto-blocking [J]. Systems Engineering and Electronics, 2022, 44(2): 470-479. |
[14] | Qinzhe LYU, Yinghui QUAN, Minghui SHA, Shuxian DONG, Mengdao XING. Ensemble deep learning-based intelligent classification of active jamming [J]. Systems Engineering and Electronics, 2022, 44(12): 3595-3602. |
[15] | Yu LEI, Xiangguang LENG, Xiaoyan ZHOU, Zhongzhen SUN, Kefeng JI. Recognition method of ship target in complex SAR image based on improved ResNet network [J]. Systems Engineering and Electronics, 2022, 44(12): 3652-3660. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||