Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (2): 455-462.doi: 10.12305/j.issn.1001-506X.2022.02.13
• Sensors and Signal Processing • Previous Articles Next Articles
Junjie WANG1,2, Dejun FENG1,2,*, Weidong HU1
Received:
2020-09-23
Online:
2022-02-18
Published:
2022-02-24
Contact:
Dejun FENG
CLC Number:
Junjie WANG, Dejun FENG, Weidong HU. Two-dimensional SAR image modulation method based on time-varying materials[J]. Systems Engineering and Electronics, 2022, 44(2): 455-462.
1 | 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005. |
BAO Z , XING M D , WANG T . Radar Imaging technology[M]. Beijing: Publishing House of Electronics Industry, 2005. | |
2 |
ZHOU F , ZHAO B , TAO M L , et al. A large scene deceptive jamming method for space-borne SAR[J]. IEEE Trans.on Geoscience Remote Sensing, 2013, 51 (8): 4486- 4495.
doi: 10.1109/TGRS.2013.2259178 |
3 | LIU Y C , WANG W , PAN X Y , et al. A frequency-domain three-stage algorithm for active deception jamming against synthetic aperture radar[J]. IET Radar, Sonar & Navigation, 2014, 8 (6): 639- 646. |
4 | ZHAO B , ZHOU F , TAO M L , et al. Improved method for synthetic aperture radar scattered wave deception jamming[J]. IET Radar, Sonar & Navigation, 2014, 8 (8): 971- 976. |
5 |
WU Q H , ZHAO F , AI X F , et al. Two-dimensional blanket jamming against ISAR using nonperiodic ISRJ[J]. IEEE Sensors Journal, 2019, 19 (11): 4031- 4038.
doi: 10.1109/JSEN.2019.2897363 |
6 |
SHI Q Z , WANG C , HUANG J J , et al. Multiple targets deception jamming against ISAR based on periodic 0-π phase modulation[J]. IEEE Sensors Journal, 2019, 19 (18): 7950- 7960.
doi: 10.1109/JSEN.2019.2905557 |
7 |
黄洪旭, 黄知涛, 吴京, 等. 对合成孔径雷达的步进移频干扰[J]. 宇航学报, 2011, 32 (4): 898- 902.
doi: 10.3873/j.issn.1000-1328.2011.04.028 |
HUANG H X , HUANG Z T , WU J , et al. Stepped-shift-frequency jamming to SAR[J]. Journal of Astronautics, 2011, 32 (4): 898- 902.
doi: 10.3873/j.issn.1000-1328.2011.04.028 |
|
8 | WANG X S , LIU J C , ZHANG W M , et al. Mathematic principles of interrupted-sampling repeater jamming (ISRJ)[J]. Sciecnce China—Information Sciecnces, 2007, 50 (1): 113- 123. |
9 | FENG D J , XU L T , WANG X S , et al. Jamming wideband radar using interrupted-sampling repeater[J]. IEEE Trans.on Aerospace & Electronic Systems, 2017, 53 (3): 1341- 1354. |
10 | WEI X Z , XU S K , PENG B , et al. False-target image synthesizer for countering ISAR via inverse dechirping[J]. Journal of Systems Engineering and Electronics, 2016, 27 (1): 99- 110. |
11 |
胡东辉, 吴一戎. 合成孔径雷达散射波干扰研究[J]. 电子学报, 2002, 30 (12): 1882- 1884.
doi: 10.3321/j.issn:0372-2112.2002.12.040 |
HU D H , WU Y R . The scatter-wave jamming to SAR[J]. Acta Electronica Sinica, 2002, 30 (12): 1882- 1884.
doi: 10.3321/j.issn:0372-2112.2002.12.040 |
|
12 | 陈静. 雷达无源干扰原理[M]. 北京: 国防工业出版社, 2009. |
CHEN J . Principles of radar passive jamming[M]. Beijing: National Defense Industry Press, 2009. | |
13 | 冯德军, 谢前朋, 王俊杰, 等. 对雷达回波的无源电磁调控技术及其发展[J]. 系统工程与电子技术, 2019, 41 (6): 1236- 1241. |
FENG D J , XIE Q P , WANG J J , et al. Passive electromagnetic manipulation technology to radar echo and its development[J]. Systems Engineering and Electronics, 2019, 41 (6): 1236- 1241. | |
14 |
ACHOURI K , CALOZ C . Design, concepts, and applications of electromagnetic metasurfaces[J]. Nanophotonics, 2018, 7 (6): 1095- 1116.
doi: 10.1515/nanoph-2017-0119 |
15 |
CUI T J , LIU S , ZHANG L . Information metamaterials and metasurfaces[J]. Journal of Materials Chemistry C, 2017, 5 (15): 3644- 3648.
doi: 10.1039/C7TC00548B |
16 |
ZHANG L , CHEN X Q , LIU S , et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 2018, 9 (1): 4334.
doi: 10.1038/s41467-018-06802-0 |
17 |
崔铁军, 吴浩天, 刘硕. 信息超材料研究进展[J]. 物理学报, 2020, 69 (15): 158101.
doi: 10.7498/aps.69.20200246 |
CUI T J , WU H T , LIU S . Research progress of information metamaterials[J]. Acta Physica Sinica, 2020, 69 (15): 158101.
doi: 10.7498/aps.69.20200246 |
|
18 | WU R Y , CUI T J . Microwave metamaterials: from exotic physics to novel information systems[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21 (1): 4- 26. |
19 |
CALOZ C , DECK-LEGER Z . Spacetime metamaterials-part Ⅱ: theory and applications[J]. IEEE Trans.on Antennas Propagation, 2020, 68 (3): 1583- 1598.
doi: 10.1109/TAP.2019.2944216 |
20 |
SAIKIA M , SRIVASTAVA K , RAMAKRISHNA S . Frequency-shifted reflection of electromagnetic waves using a time-modulated active tunable frequency-selective surface[J]. IEEE Trans.on Antennas Propagation, 2020, 68 (4): 2937- 1862.
doi: 10.1109/TAP.2019.2951494 |
21 |
LIU M K , KOZYREV A , SHADRIVOV I . Time-varying metasurfaces for broadband spectral comouflage[J]. Physical Review Applied, 2019, 12, 054052.
doi: 10.1103/PhysRevApplied.12.054052 |
22 |
ZHAO J , YANG X , DAI J Y , et al. Programmable time-domain digital-coding metasurface for non-linear harmonic mani-pulation and new wireless communication systems[J]. National Science Review, 2019, 6 (2): 231- 238.
doi: 10.1093/nsr/nwy135 |
23 | DAI J Y , ZHAO J , CHENG Q , et al. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface[J]. Light: Science & Applications, 2018, 7 (6): 888- 897. |
24 |
WANG J J , FENG D J , XU L T , et al. Synthetic aperture radar target feature modulation using active frequency selective surface[J]. IEEE Sensors Journal, 2019, 19 (6): 2113- 2125.
doi: 10.1109/JSEN.2018.2886013 |
25 |
CHAMBERS B , TENNANT A . The phase-switched screen[J]. IEEE Antennas and Propagation Magazine, 2004, 46 (6): 23- 27.
doi: 10.1109/MAP.2004.1396733 |
26 |
TENNANT A . Reflection properties of a phase modulating planar screen[J]. Electronic Letters, 1997, 33 (21): 1768- 1769.
doi: 10.1049/el:19971160 |
27 |
CHAMBERS B , TENNANT A . Influence of switching waveform characteristics on the performance of a single layer phase switched screen[J]. IEEE Trans.on Electromagnetic Compatibility, 2002, 44 (3): 434- 441.
doi: 10.1109/TEMC.2002.801755 |
28 | 谢少毅. 相位调制频率选择表面隐身技术研究[D]. 长沙: 国防科学技术大学, 2015. |
XIE S Y. Research on the stealth technology of phase modulating surface[D]. Changsha: National University of Defense Technology, 2015. | |
29 | 张然. 相位调制表面的特性及其雷达效应研究[D]. 长沙: 国防科学技术大学, 2016. |
ZHANG R. Research on the properties and radar effect of phase switched screen[D]. Changsha: National University of Defense Technology, 2016. | |
30 | 冯德军, 徐乐涛, 张然, 等. 相位调制表面雷达回波特性研究[J]. 现代雷达, 2018, 40 (4): 77- 82. |
FENG D J , XU L T , ZHANG R , et al. A study on signature of radar echo from a phase-switched screen[J]. Modern Radar, 2018, 40 (4): 77- 82. | |
31 | XU L T , FENG D J , WANG X S . Matched-filter properties of linear frequency modulation radar signal reflected from a phase-switched screen[J]. IET Radar, Sonar & Navigation, 2016, 10 (2): 318- 324. |
32 |
XU L T , FENG D J , ZHANG R , et al. High-resolution range profile deception method based on phase-switched screen[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15, 1665- 1668.
doi: 10.1109/LAWP.2016.2521778 |
[1] | Tian MIAO, Hongcheng ZENG, He WANG, Jie CHEN. A fast extraction method of flood areas based on iterative threshold segmentation using spaceborne SAR data [J]. Systems Engineering and Electronics, 2022, 44(9): 2760-2768. |
[2] | Caiyun WANG, Yida WU, Jianing WANG, Lu MA, Huanyue ZHAO. SAR image target recognition based on combinatorial optimization convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(8): 2483-2487. |
[3] | Dongning FU, Guisheng LIAO, Yan HUANG, Bangjie ZHANG, Xing WANG. Time-varying narrow-band interference suppression algorithm for SAR based on graph Laplacian embedding [J]. Systems Engineering and Electronics, 2022, 44(6): 1846-1853. |
[4] | Minghui GAI, Su ZHANG, Weitian SUN, Yude NI, Lei YANG. Structural-feature enhancement of SAR targets based on complex value compatible total variation [J]. Systems Engineering and Electronics, 2022, 44(6): 1862-1872. |
[5] | Penghui JI, Dahai DAI, Shiqi XING, Dejun FENG. Dense false moving targets generation method [J]. Systems Engineering and Electronics, 2022, 44(5): 1502-1511. |
[6] | Dong CHEN, Yanwei JU. Ship object detection SAR images based on semantic segmentation [J]. Systems Engineering and Electronics, 2022, 44(4): 1195-1201. |
[7] | Lei YANG, Su ZHANG, Minghui GAI, Cheng FANG. High-resolution SAR imagery with enhancement of directional structure feature [J]. Systems Engineering and Electronics, 2022, 44(3): 808-818. |
[8] | Cheng FANG, Huijuan LI, Wen LU, Yumeng SONG, Lei YANG. Multi-feature enhancement algorithm for high resolution SAR based on morphological auto-blocking [J]. Systems Engineering and Electronics, 2022, 44(2): 470-479. |
[9] | Yu LEI, Xiangguang LENG, Xiaoyan ZHOU, Zhongzhen SUN, Kefeng JI. Recognition method of ship target in complex SAR image based on improved ResNet network [J]. Systems Engineering and Electronics, 2022, 44(12): 3652-3660. |
[10] | Xiaoya JIA, Hongqiao WANG, Yadan YANG, Zhongma CUI, Bin XIONG. Anchor free SAR image ship target detection method based on the YOLO framework [J]. Systems Engineering and Electronics, 2022, 44(12): 3703-3709. |
[11] | Zheng XU, Guangzhong GONG, Yunhua LUO, Guangde LI. Application of improved spatial variant apodization algorithm through constrained optimization in sidelobe suppression [J]. Systems Engineering and Electronics, 2022, 44(11): 3298-3304. |
[12] | Baoping YANG, Maogang WEI, Zhichao BAO, Linsen YANG, Xiaoyu WANG. Comparative analysis of common coherent jamming technology against SAR [J]. Systems Engineering and Electronics, 2022, 44(11): 3397-3402. |
[13] | Guang SUN, Shiqi XING, Datong HUANG, Yongzhen LI, Xuesong WANG. Jamming method of intermittent sampling against SAR-GMTI based on noise multiplication modulation [J]. Systems Engineering and Electronics, 2022, 44(10): 3059-3071. |
[14] | Yonggang LI, Weigang ZHU, Qiongnan HUANG, Yuntao LI, Yonghua HE. Near-shore ship target detection with SAR images in complex background [J]. Systems Engineering and Electronics, 2022, 44(10): 3096-3103. |
[15] | Shichao XIONG, Jiacheng NI, Qun ZHANG, Ying LUO. High-squint mode SAR GMTIm based on ωk algorithm with spectrum rotation [J]. Systems Engineering and Electronics, 2022, 44(10): 3104-3114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||