Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (9): 2091-2097.doi: 10.3969/j.issn.1001-506X.2020.09.27
Previous Articles Next Articles
Changsheng YIN(), Ruopeng YANG(
), Wei ZHU(
), Xiaofei ZOU(
)
Received:
2019-12-31
Online:
2020-08-26
Published:
2020-08-26
CLC Number:
Changsheng YIN, Ruopeng YANG, Wei ZHU, Xiaofei ZOU. Emergency communication network planning method based on deep reinforcement learning[J]. Systems Engineering and Electronics, 2020, 42(9): 2091-2097.
1 |
CHITI F , FANTACCI R . A broadband wireless communication system for emergency management[J]. IEEE Wireless Communications, 2008, 15 (3): 8- 14.
doi: 10.1109/MWC.2008.4547517 |
2 | 张赛男, 刘东亮. 基于CW节约算法和遗传算法的网络优化[J]. 吉林大学学报, 2018, 56 (5): 1219- 1223. |
ZHANG S N , LIU D L . Network optimization based on CW saving algorithm and genetic algorithm[J]. Journal of Jilin University, 2018, 56 (5): 1219- 1223. | |
3 |
张捷, 杨希龙. 基于模拟退火算法的移动通信网络自规划[J]. 计算机工程, 2017, 43 (5): 83- 87.
doi: 10.3969/j.issn.1000-3428.2017.05.013 |
ZHANG J , YANG X L . Mobile communication network self-planning based on simulated annealing algorithm[J]. Computer Engineering, 2017, 43 (5): 83- 87.
doi: 10.3969/j.issn.1000-3428.2017.05.013 |
|
4 | 周宇航.基于FSO的5G回传网络节点定位及拓扑优化策略研究[D].北京:北京邮电大学, 2019. |
ZHOU Y H. Research on node deployment and topology optimization strategy in FSO-based 5G backhaul networks[D]. Beijing: Beijing University of Posts and Telecommunications, 2019. | |
5 | 吴文甲.多射频多信道无线Mesh网络的拓扑规划研究[D].南京:东南大学, 2013. |
WU W J. Research on topology planning for multi-interface multi-channel wireless Mesh networks[D]. Nanjing: Southeast University, 2013. | |
6 | LE D N , NGUYEN N G , DINH N H , et al. Optimizing gateway placement in wireless mesh networks based on ACO algorithm[J]. International Journal of Computer & Communication Engineering, 2013, 2 (2): 45- 53. |
7 | KAMAR A, NAWAZ S J, PATWARY M M, et al. Optimized algorithm for cellular network planning based on terrain and demand analysis[C]//Proc.of the International Conference on Computer Technologies and Development, 2010: 359-364. |
8 | ZHOU Z H . Machine learning[M]. Beijing: Tsinghua University Press, 2016. |
9 |
LECUN Y , BENGIO Y , HINTON G . Deep learning[J]. Nature, 2015, 521 (7553): 436- 444.
doi: 10.1038/nature14539 |
10 | 刘全, 翟建伟, 章宗长, 等. 深度强化学习综述[J]. 计算机学报, 2018, 41 (1): 1- 27. |
LIU Q , ZHAI J W , ZHANG Z Z , et al. A survey on deep reinforcement learning[J]. Chinese Journal of Computers, 2018, 41 (1): 1- 27. | |
11 | FERRET J, MARINIER R, GEIST M, et al. Credit assignment as a proxy for transfer in reinforcement learning[EB/OL]. [2019-7-18]. https://arxiv.org/abs/1907.08027v1. |
12 |
JADERBERG M , MOJCIECH M C . Human-level performance in 3D multiplayer games with population-based reinforcement learning[J]. Science, 2019, 364 (6443): 859- 865.
doi: 10.1126/science.aau6249 |
13 | SUTTON R S , BARTO A G . Reinforcement learning: an introduction[M]. Cambridge, USA: Massachusetts Institute of Technology Press, 1998. |
14 | HAUSKNECHT M, STONE P. Deep recurrent Q-learning for partially observable MDPs[EB/OL].[2017-11-16]. https://arxiv.org/abs/1507.06527. |
15 | VAN H H, GUEZ A, SILVER D. Deep reinforcement learning with double Q-1earning[C]//Proc.of the AAAI Conference on Artificial Intelligence, 2016: 2094-2100. |
16 |
SILVER D , SCHRITTWIESER J , SIMONYAN K , et al. Mastering the game of Go without human knowledge[J]. Nature, 2017, 550 (7676): 354- 359.
doi: 10.1038/nature24270 |
17 |
SHAN K , ZHU Y H , ZHAO D B . StarCraft micromanagement with reinforcement learning and curriculum transfer learn-ing[J]. IEEE Trans.on Emerging Topics in Computational Intelligence, 2019, 3 (1): 73- 84.
doi: 10.1109/TETCI.2018.2823329 |
18 | CLARK C, STORKEY A J. Training deep convolutional neural networks to play Go[C]//Proc.of the 32nd International Conference on Machine Learning, 2015, 37: 1766-1774. |
19 | LIU S Q, LEVER G, MEREL J, et al. Emergent coordination through competition[EB/OL].[2019-2-21]. https://arxiv.org/abs/1902.07151. |
20 | FORTUNATO M, TAN M, FAULKNER R, et al. Generalization of reinforcement learners with working and episodic memory[C]//Proc.of the 33rd Conference on Neural Information Processing Systems, 2019: 12448-12457. |
21 |
SILVER D , HUANG A , MADDISON C J , et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529 (7587): 484- 489.
doi: 10.1038/nature16961 |
22 | XUE B , GLEN B . DeepLoco: dynamic locomotion skills using hierarchical deep reinforcement learning[J]. ACM Transactions on Graphics, 2017, 36 (4): 1- 16. |
23 | SCHERRER B , GHAVAMZADEH M , GABILLON V , et al. Approximate muddied policy iteration and its application to the game of tetris[J]. The Journal of Machine Learning Research, 2015, 16 (1): 1629- 1676. |
24 |
MNIH V , KAVUKCUOGLU K , SILVER D , et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518 (7540): 529- 533.
doi: 10.1038/nature14236 |
25 | MNIH V, BADIA A P, MIRZA M, et al. Asynchronous methods for deep reinforcement learning[C]//Proc.of the 33rd International Conference on Machine Learning, 2016, 48: 1928-1937. |
26 | KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[C]//Proc.of the 25th International Conference on Neural Information Processing Systems, 2012: 1097-1105. |
27 | SALAKHUTDINOV R, MNIH A, HINTON G. Restricted boltzmann machine for collaborative filtering[C]//Proc.of the ACM International Conference Machine Learning, 2007: 791-798. |
28 | SILVER D , HUBERT T . A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play[J]. Scie-nce, 2018, 362 (6419): 1140- 1144. |
29 |
JADERBERG M , Czarnecki W M , DUNNING I , et al. Human-level performance in 3D multiplayer games with population-based reinforcement learning[J]. Science, 2019, 364 (6443): 859- 865.
doi: 10.1126/science.aau6249 |
30 | WU B, FU Q, LIANG J, et al. Hierarchical macro strategy model for MOBA game AI[EB/OL].[2018-12-19]. https://arxiv.org/abs/1812.07887v1. |
31 |
SCHMIDHUBER J . Deep learning in neural networks: an over-view[J]. Neural Networks, 2015, 61, 85- 117.
doi: 10.1016/j.neunet.2014.09.003 |
[1] | Bakun ZHU, Weigang ZHU, Wei LI, Ying YANG, Tianhao GAO. Research on decision-making modeling of cognitive jamming for multi-functional radar based on Markov [J]. Systems Engineering and Electronics, 2022, 44(8): 2488-2497. |
[2] | Guan WANG, Haizhong RU, Dali ZHANG, Guangcheng MA, Hongwei XIA. Design of intelligent control system for flexible hypersonic vehicle [J]. Systems Engineering and Electronics, 2022, 44(7): 2276-2285. |
[3] | Lingyu MENG, Bingli GUO, Wen YANG, Xinwei ZHANG, Zuoqing ZHAO, Shanguo HUANG. Network routing optimization approach based on deep reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(7): 2311-2318. |
[4] | Dongzi GUO, Rong HUANG, Hechuan XU, Liwei SUN, Naigang CUI. Research on deep deterministic policy gradient guidance method for reentry vehicle [J]. Systems Engineering and Electronics, 2022, 44(6): 1942-1949. |
[5] | Mingren HAN, Yufeng WANG. Optimization method for orbit transfer of all-electric propulsion satellite based on reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(5): 1652-1661. |
[6] | Li HE, Liang SHEN, Hui LI, Zhuang WANG, Wenquan TANG. Survey on policy reuse in reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(3): 884-899. |
[7] | Bakun ZHU, Weigang ZHU, Wei LI, Ying YANG, Tianhao GAO. Multi-function radar intelligent jamming decision method based on prior knowledge [J]. Systems Engineering and Electronics, 2022, 44(12): 3685-3695. |
[8] | Chenrui SHI, Lu TIAN, Zhan XU, Ruxin ZHI, Jinhui CHEN. Effectiveness evaluation method of emergency communication and sensing equipment based on PSO-BP [J]. Systems Engineering and Electronics, 2022, 44(11): 3455-3462. |
[9] | Qingqing YANG, Yingying GAO, Yu GUO, Boyuan XIA, Kewei YANG. Target search path planning for naval battle field based on deep reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(11): 3486-3495. |
[10] | Bin ZENG, Hongqiang ZHANG, Houpu LI. Research on anti-submarine strategy for unmanned undersea vehicles [J]. Systems Engineering and Electronics, 2022, 44(10): 3174-3181. |
[11] | Qitian WAN, Baogang LU, Yaxin ZHAO, Qiuqiu WEN. Autopilot parameter rapid tuning method based on deep reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(10): 3190-3199. |
[12] | Bin ZENG, Rui WANG, Houpu LI, Xu FAN. Scheduling strategies research based on reinforcement learning for wartime support force [J]. Systems Engineering and Electronics, 2022, 44(1): 199-208. |
[13] | Zhiwei JIANG, Yang HUANG, Qihui WU. Anti-interference frequency allocation based on kernel reinforcement learning [J]. Systems Engineering and Electronics, 2021, 43(6): 1547-1556. |
[14] | Ang GAO, Zhiming DONG, Liang LI, Li DUAN, Qisheng GUO. Decision modeling of close-range air combat for LVC training in blue-side virtual entity [J]. Systems Engineering and Electronics, 2021, 43(6): 1606-1617. |
[15] | Jiayi LIU, Shaohua YUE, Gang WANG, Xiaoqiang YAO, Jie ZHANG. Cooperative evolution algorithm of multi-agent system under complex tasks [J]. Systems Engineering and Electronics, 2021, 43(4): 991-1002. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||