Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (3): 646-652.doi: 10.3969/j.issn.1001-506X.2020.03.019
Previous Articles Next Articles
Qiang ZENG(), Zheng HUANG(
), Shuhuan WEI(
)
Received:
2019-07-10
Online:
2020-03-01
Published:
2020-02-28
Supported by:
CLC Number:
Qiang ZENG, Zheng HUANG, Shuhuan WEI. Bayesian network parameter learning method based on expert priori knowledge and monotonic constraints[J]. Systems Engineering and Electronics, 2020, 42(3): 646-652.
Table 1
Network real parameters of the remaining nodes"
节点 | 参数值 |
S | PS|C(0|0)=0.2 |
PS|C(1|0)=0.8 | |
PS|C(0|1)=0.6 | |
PS|C(1|1)=0.4 | |
R | PR|C(0|0)=0.9 |
PR|C(1|0)=0.1 | |
PR|C(0|1)=0.2 | |
PR|C(1|1)=0.8 | |
W | PW|S, R(0|0, 0)=0.9 |
PW|S, R(1|0, 0)=0.1 | |
PW|S, R(0|0, 1)=0.2 | |
PW|S, R(1|0, 1)=0.8 | |
PW|S, R(0|1, 0)=0.1 | |
PW|S, R(1|1, 0)=0.9 | |
PW|S, R(0|1, 1)=0.01 | |
PW|S, R(1|1, 1)=0.99 |
Table 4
W node parameter learning results"
W节点状态 | 5样本集 | 15样本集 | |||||||
MLE | 无先验MAP | 均匀分布方法 | 本文方法 | MLE | 无先验MAP | 均匀分布方法 | 本文方法 | ||
PW|S, R(0|0, 0) | 1.000 0 | 0.666 7 | 0.850 4 | 0.902 6 | 1.000 0 | 0.800 0 | 0.851 9 | 0.907 3 | |
PW|S, R(1|0, 0) | 0.000 0 | 0.333 3 | 0.149 6 | 0.097 4 | 0.000 0 | 0.200 0 | 0.148 1 | 0.092 7 | |
PW|S, R(0|0, 1) | 0.000 0 | 0.333 3 | 0.241 5 | 0.195 3 | 0.200 0 | 0.285 7 | 0.242 5 | 0.200 0 | |
PW|S, R(1|0, 1) | 1.000 0 | 0.666 7 | 0.758 5 | 0.804 7 | 0.800 0 | 0.714 3 | 0.757 5 | 0.800 0 | |
PW|S, R(0|1, 0) | 0.000 0 | 0.200 0 | 0.173 6 | 0.092 7 | 0.000 0 | 0.166 7 | 0.167 9 | 0.090 5 | |
PW|S, R(1|1, 0) | 1.000 0 | 0.800 0 | 0.826 4 | 0.907 3 | 1.000 0 | 0.833 3 | 0.832 1 | 0.909 5 | |
PW|S, R(0|1, 1) | 0.000 0 | 0.333 3 | 0.020 0 | 0.010 0 | 0.000 0 | 0.200 0 | 0.019 5 | 0.009 8 | |
PW|S, R(1|1, 1) | 1.000 0 | 0.666 7 | 0.980 0 | 0.990 0 | 1.000 0 | 0.800 0 | 0.980 5 | 0.990 2 | |
W节点状态 | 25样本集 | 35样本集 | |||||||
MLE | 无先验MAP | 均匀分布方法 | 本文方法 | MLE | 无先验MAP | 均匀分布方法 | 本文方法 | ||
PW|S, R(0|0, 0) | 0.750 0 | 0.666 7 | 0.847 7 | 0.897 0 | 0.888 9 | 0.818 2 | 0.851 4 | 0.899 5 | |
PW|S, R(1|0, 0) | 0.250 0 | 0.333 3 | 0.152 3 | 0.103 0 | 0.111 1 | 0.181 8 | 0.148 6 | 0.100 5 | |
PW|S, R(0|1, 0) | 0.125 0 | 0.200 0 | 0.222 6 | 0.193 9 | 0.100 0 | 0.166 7 | 0.211 0 | 0.190 0 | |
PW|S, R(1|1, 0) | 0.875 0 | 0.800 0 | 0.777 4 | 0.806 1 | 0.900 0 | 0.833 3 | 0.789 0 | 0.810 0 | |
PW|S, R(0|0, 1) | 0.250 0 | 0.300 0 | 0.154 2 | 0.105 9 | 0.300 0 | 0.300 0 | 0.206 5 | 0.105 9 | |
PW|S, R(1|0, 1) | 0.750 0 | 0.700 0 | 0.845 8 | 0.894 1 | 0.700 0 | 0.700 0 | 0.750 0 | 0.894 1 | |
PW|S, R(0|1, 1) | 0.000 0 | 0.166 7 | 0.019 3 | 0.009 7 | 0.000 0 | 0.125 0 | 0.019 0 | 0.009 5 | |
PW|S, R(1|1, 1) | 1.000 0 | 0.833 3 | 0.980 7 | 0.990 3 | 1.000 0 | 0.875 0 | 0.981 0 | 0.990 5 |
Table 8
Monotonic constraint"
编号 | 约束 |
1 | PT|T2, T4(0|0, 0)>PT|T2, T4(1|0, 0) |
2 | PT|T2, T4(1|0, 1)>PT|T2, T4(0|0, 1) |
3 | PT|T2, T4(1|1, 0)>PT|T2, T4(0|1, 0) |
4 | PT|T2, T4(1|1, 1)>PT|T2, T4(0|1, 1) |
5 | PN|N1, N2(0|0, 0)>PN|N1, N2(1|0, 0) |
6 | PN|N1, N2(0|0, 1) > PN|N1, N2(1|0, 1) |
7 | PN|N1, N2(0|1, 0)>PN|N1, N2(1|1, 0) |
8 | PN|N1, N2(1|1, 1)>PN|N1, N2(0|1, 1) |
9 | PH|T, N(0|0, 0)>PH|T, N(1|0, 0) |
10 | PH|T, N(1|0, 1)>PH|T, N(0|0, 1) |
11 | PH|T, N(1|1, 0)>PH|T, N(0|1, 0) |
12 | PH|T, N(1|1, 1)>PH|T, N(0|1, 1) |
Table 9
Gas turbine expert prior knowledge"
编号 | 约束 |
1 | PT|T2, T4(1|0, 0)≈0.2 |
2 | PT|T2, T4(0|0, 1)≈0.3 |
3 | PT|T2, T4(0|1, 0)≈0.4 |
4 | PT|T2, T4(0|1, 1)≈0.1 |
5 | PN|NN2, N2(1|0, 0)≈0.1 |
6 | PN|NN2, N2(1|0, 1)≈0.4 |
7 | PN|NN2, N2(1|1, 0)≈0.4 |
8 | PN|NN2, N2(0|1, 1)≈0.2 |
9 | PH|T, N(1|0, 0)≈0.1 |
10 | PH|T, N(0|0, 1)≈0.4 |
11 | PH|T, N(0|1, 0)≈0.3 |
12 | PH|T, N(0|1, 1)≈0.1 |
Table 10
BN parameter learning results"
节点 | T4 | 0 | 1 | ||
T2 | 0 | 1 | 0 | 1 | |
T | 0 | 0.809 1 | 0.349 1 | 0.388 3 | 0.100 0 |
1 | 0.190 9 | 0.650 9 | 0.611 7 | 0.900 0 | |
节点 | N2 | 0 | 1 | ||
N1 | 0 | 1 | 0 | 1 | |
N | 0 | 0.878 8 | 0.574 0 | 0.587 5 | 0.190 9 |
1 | 0.121 2 | 0.426 0 | 0.412 5 | 0.809 1 | |
节点 | T | 0 | 1 | ||
N | 0 | 1 | 0 | 1 | |
H | 0 | 0.859 9 | 0.440 6 | 0.260 3 | 0.137 1 |
1 | 0.140 1 | 0.559 4 | 0.739 7 | 0.862 9 |
1 | YAO T , CHOI A , DARWICHE A . Learning Bayesian network parameters under equivalence constraints[J]. Artificial Intelligence, 2017, 244 (C): 239- 257. |
2 | AMIN M , KHAN F , IMTIZA S . Fault detection and pathway analysis using a dynamic Bayesian network[J]. Chemical Engineering Science, 2019, 195 (23): 777- 790. |
3 | CAI B , LIU H , XIE M . A real-time fault diagnosis methodology of complex systems using object-oriented Bayesian networks[J]. Mechanical Systems & Signal Processing, 2016, 80 (1): 31- 44. |
4 | ARIAS J , JESUS M G , JOSE A G , et al. Medical image modality classification using discrete Bayesian networks[J]. Computer Vision & Image Understanding, 2016, 151 (C): 61- 71. |
5 |
马洁. 一种基于线性代数的图像处理算法研究[J]. 计算机科学, 2012, 39 (11): 286- 288.
doi: 10.3969/j.issn.1002-137X.2012.11.068 |
MA J . Research on image processing algorithm based on linear algebra[J]. Computer Science, 2012, 39 (11): 286- 288.
doi: 10.3969/j.issn.1002-137X.2012.11.068 |
|
6 | 李思瑶, 周海芳, 方民权. 基于GPU的图像监督分类算法的研究[J]. 计算机科学, 2018, 45 (S1): 143- 145, 170. |
LI S Y , ZHOU H F , FANG M Q . Research on image supervised classification algorithm based on GPU[J]. Computer Science, 2018, 45 (S1): 143- 145, 170. | |
7 | 孙海文, 谢晓方, 孙涛, 等. 小样本数据缺失状态下DBN舰艇编队防空目标威胁评估方法[J]. 系统工程与电子技术, 2019, 41 (6): 1300- 1308. |
SUN H W , XIE X F , SUN T , et al. Threat assessment method of warships formation air defense based on DBN under the condition of small sample data missing[J]. Systems Engineering and Electronics, 2019, 41 (6): 1300- 1308. | |
8 | DSHIRE S , TSHIR F , JIAO Y , et al. Bayesian network inference for probabilistic strength estimation of aging pipeline systems[J]. International Journal of Pressure Vessels and Piping, 2018, 162 (3): 30- 39. |
9 | CHATURVEDI I , RAGUSA E , GASTSLDO P , et al. Bayesian network based extreme learning machine for subjectivity detection[J]. Journal of the Franklin Institute, 2017, 355 (4): 1780- 1797. |
10 | ABAEI M M , ABBASSI R , GARANIYA V , et al. Reliability assessment of marine floating structures using Bayesian network[J]. Applied Ocean Research, 2018, 76 (7): 51- 60. |
11 | GUO Z G , GUO X G , REN H , et al. Learning Bayesian network parameters from small data sets: a further constrained qualitatively maximum a posteriori method[J]. International Journal of Approximate Reasoning, 2017, 91 (12): 22- 35. |
12 | 任佳, 高晓光, 白勇. 信息不完备小样本条件下离散DBN参数学习[J]. 系统工程与电子技术, 2012, 34 (8): 1723- 1728. |
REN J , GAO X G , BAI Y . Discrete DBN parameter learning under small sample conditions[J]. System Engineering and Electronics, 2012, 34 (8): 1723- 1728. | |
13 | ZHOU Y , FENTON N , ZHU C . An empirical study of Bayesian network parameter learning with monotonic influence constraints[J]. Decision Support Systems, 2016, 87 (7): 69- 79. |
14 |
YALIN J , ZIZHEN L , HUI G , et al. An improved constraint-based Bayesian network learning method using Gaussian kernel probability density estimator[J]. Expert Systems with Applications, 2018, 113, 544- 554.
doi: 10.1016/j.eswa.2018.06.058 |
15 | DE C C P , SCANAGATTA M , CORANI G , et al. Entropy-based pruning for learning Bayesian networks using BIC[J]. Artificial Intelligence, 2018, 260 (7): 42- 50. |
16 | 高晓光, 邸若海, 郭志高. 基于单调性约束的离散贝叶斯网络参数学习[J]. 系统工程与电子技术, 2014, 36 (2): 272- 277. |
GAO X G , DI R H , GUO Z G . Parameter learning of discrete Bayesian networks based on monotonic constraints[J]. Systems Engineering and Electronics, 2014, 36 (2): 272- 277. | |
17 | RUI C, WEI W. Novel algorithm for Bayesian network parameter learning with informative prior constraints[C]//Proc.of the International Joint Conference on Neural Networks, 2010: 1-8. |
18 | 柴慧敏, 赵昀瑶, 方敏. 利用先验正态分布的贝叶斯网络参数学习[J]. 系统工程与电子技术, 2018, 40 (10): 219- 224. |
CHAI H M , ZHAO Y Y , FANG M . Bayesian network parameter learning using prior normal distribution[J]. Systems Engineering and Electronics, 2018, 40 (10): 219- 224. | |
19 | DE C, JI Q. Improving Bayesian network parameter learning using constraints[C]//Proc.of the 19th International Conference on Pattern Recognition, 2008: 1-4. |
20 | NICULESCU R S , MITCHELL T M . Bayesian network learning with parameter constraints[J]. Journal of Machine Learning Research, 2006, 7 (3): 1357- 1383. |
21 |
LIAO W , JI Q . Learning Bayesian network parameters under incomplete data with domain knowledge[J]. Pattern Recognition, 2009, 42 (11): 3046- 3056.
doi: 10.1016/j.patcog.2009.04.006 |
22 | 高晓光, 叶思懋, 邸若海, 等. 基于融合先验方法的贝叶斯网络结构学习[J]. 系统工程与电子技术, 2018, 40 (4): 790- 796. |
GAO X G , YE S M , DI R H , et al. Bayesian network structure learning based on fusion prior method[J]. Systems Engineering and Electronics, 2018, 40 (4): 790- 796. | |
23 | 吴红, 王维平, 杨峰. 融合先验信息的贝叶斯网络结构学习方法[J]. 系统工程与电子技术, 2012, 34 (12): 2585- 2591. |
WU H , WANG W P , YANG F . Bayesian network structure learning method based on prior information[J]. Systems Engineering and Electronics, 2012, 34 (12): 2585- 2591. | |
24 | 崔建国, 肖杰, 蒋丽英, 等. 基于组合赋权法和云重心评估法的燃气轮机健康状态评估[J]. 科学技术与工程, 2017, 17 (33): 268- 273. |
CUI J G , XIAO J , JIANG L Y , et al. Gas turbine health status assessment based on combination weighting method and cloud gravity center assessment method[J]. Science Technology and Engineering, 2017, 17 (33): 268- 273. |
[1] | Yifan LI, Huaming QIAN, Hongzhong HUANG, Tingyu ZHANG, Tudi HUANG. Reliability analysis of command and control network system based on generalized continuous time Bayesian network [J]. Systems Engineering and Electronics, 2022, 44(12): 3880-3886. |
[2] | Peng WANG, Zijing SUN, Fan ZHANG, Guosong XIAO. Reliability analysis model for phased-mission system considering probabilistic common cause failures [J]. Systems Engineering and Electronics, 2022, 44(12): 3887-3898. |
[3] | Dianfeng QIAO, Yan LIANG, Chaoxiong MA, Xinyu YANG, Mian WANG, Jianguo LI. Recognition and prediction of group target intention in multi-domain operations [J]. Systems Engineering and Electronics, 2022, 44(11): 3403-3412. |
[4] | Yanzhao LIU, Zhiqiu HUANG, Guohua SHEN, Jinyong WANG, Heng XU. Behavioral decision-making methods of autonomous vehicles based on decision tree and BN [J]. Systems Engineering and Electronics, 2022, 44(10): 3143-3154. |
[5] | Qiankuo MA, Xiaokuan ZHANG, Binfeng ZONG, Jiahua XU, Yang WANG, Shuyu ZHENG. Dynamic RCS statistical characteristics analysis of stealth aircraft based on improved hybrid lognormal distribution model [J]. Systems Engineering and Electronics, 2022, 44(1): 34-39. |
[6] | Luda ZHAO, Bin WANG. Method of electronic countermeasure targets' list generation based on RS-DBN [J]. Systems Engineering and Electronics, 2021, 43(9): 2373-2382. |
[7] | Hongzhuan CHEN, Aijia ZHAO, Tengjiao LI, Congcong CAI, Shuo CHENG, Chunli XU. Fuzzy Bayesian network inference fault diagnosis of complex equipment based on fault tree [J]. Systems Engineering and Electronics, 2021, 43(5): 1248-1261. |
[8] | Xue SUN, Zhiqiu HUANG, Guohua SHEN, Jinyong WANG, Heng XU. Behavior decision method of autonomous vehicle based on ontology and BN [J]. Systems Engineering and Electronics, 2021, 43(2): 452-465. |
[9] | Changxiao ZHAO, Hao LI, Lei DONG, Peng WANG. Safety analysis and evaluation of airborne HUD system based on STPA-Bayes model [J]. Systems Engineering and Electronics, 2020, 42(5): 1083-1092. |
[10] | Haowei WANG, Rui KANG. Method of analyzing degradation data based on the uncertainty theory [J]. Systems Engineering and Electronics, 2020, 42(12): 2924-2930. |
[11] | Guanglei MENG, Mingzhe ZHOU, Haiyin PIAO, Huimin ZHANG. Threat assessment method of dual-aircraft formation based on cooperative tactical recognition [J]. Systems Engineering and Electronics, 2020, 42(10): 2285-2293. |
[12] | SUN Haiwen, XIE Xiaofang, SUN Tao, ZHANG Longjie. Threat assessment method of warships formation air defense based on DBN under the condition of small sample data missing [J]. Systems Engineering and Electronics, 2019, 41(6): 1300-1308. |
[13] | LIU Jiufu, DING Xiaobin, ZHENG Rui, WANG Biao, LIU Haiyang, WANG Zhisheng. Weighted class-conditional Bayesian network classifier parameter learning of chaos quantum particle swarm [J]. Systems Engineering and Electronics, 2019, 41(10): 2304-2309. |
[14] | LI Ming, ZHANG Ren, HONG Mei, BAI Chengzu. Improved structure learning algorithm of Bayesian network based on information flow [J]. Systems Engineering and Electronics, 2018, 40(6): 1385-1390. |
[15] | GAO Xiaoguang, YE Simao, DI Ruohai, KOU Zhenchao. Bayesian network structures learning based on approach using incoporate priors method [J]. Systems Engineering and Electronics, 2018, 40(4): 790-796. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||