Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (11): 3685-3698.doi: 10.12305/j.issn.1001-506X.2025.11.17
• Systems Engineering • Previous Articles
Dali WANG1,2(
), Lei DONG1,2,*, Huawang LI1,2, Zhenzhen ZHENG1,2, Haiying HU1,2
Received:2025-03-12
Online:2025-11-25
Published:2025-12-08
Contact:
Lei DONG
E-mail:wang61254@163.com
CLC Number:
Dali WANG, Lei DONG, Huawang LI, Zhenzhen ZHENG, Haiying HU. Multi-satellite task scheduling method for repeated observation of space debris[J]. Systems Engineering and Electronics, 2025, 47(11): 3685-3698.
Table 1
Symbol definition"
| 符号 | 定义 |
| 卫星集合, | |
| 目标集合, | |
| 卫星、目标的轨道数据 | |
| 卫星、目标的数量 | |
| 卫星进行任务切换所需要的时间 | |
| 整体规划区间, | |
| 每个目标的实际观测时间, | |
| 卫星负载, | |
Table 6
Target observation arrangement"
| 目标 编号 | 观测次数/次 | 观测时长/s | 观测方案 | ||
| 卫星 | 开始时刻 | 结束时刻 | |||
| 目标1 | 10 | 240 | 1 | 0:39:09 | 0:43:09 |
| 3 | 2:06:29 | 2:10:29 | |||
| 2 | 3:06:42 | 3:10:42 | |||
| 2 | 4:41:54 | 4:45:54 | |||
| 3 | 5:21:45 | 5:25:45 | |||
| 4 | 6:51:45 | 6:55:45 | |||
| 4 | 7:51:33 | 7:55:33 | |||
| 5 | 9:26:08 | 9:30:08 | |||
| 5 | 10:02:45 | 10:06:45 | |||
| 5 | 11:43:35 | 11:47:35 | |||
| 目标2 | 8 | 300 | 1 | 0:33:39 | 0:38:39 |
| 2 | 2:10:28 | 2:15:28 | |||
| 1 | 3:49:47 | 3:54:47 | |||
| 2 | 5:27:28 | 5:32:28 | |||
| 2 | 7:05:46 | 7:10:46 | |||
| 3 | 8:36:12 | 8:41:12 | |||
| 4 | 10:18:57 | 10:23:57 | |||
| 4 | 11:20:02 | 11:25:02 | |||
| 目标3 | 6 | 480 | 3 | 0:00:01 | 0:08:01 |
| 4 | 1:39:11 | 1:47:11 | |||
| 3 | 3:24:31 | 3:32:31 | |||
| 1 | 5:28:44 | 5:36:44 | |||
| 6 | 8:17:12 | 8:25:12 | |||
| 5 | 10:10:59 | 10:18:59 | |||
| 目标4 | 8 | 480 | 2 | 0:03:31 | 0:11:31 |
| 1 | 1:56:10 | 2:04:10 | |||
| 2 | 3:35:47 | 3:43:47 | |||
| 4 | 5:06:20 | 5:14:20 | |||
| 5 | 6:38:32 | 6:46:32 | |||
| 1 | 7:15:13 | 7:23:13 | |||
| 1 | 9:01:22 | 9:09:22 | |||
| 2 | 1038:44 | 10:46:44 | |||
| 目标5 | 7 | 300 | 2 | 1:34:43 | 1:39:43 |
| 3 | 3:18:34 | 3:23:34 | |||
| 2 | 5:01:35 | 5:06:35 | |||
| 3 | 6:32:45 | 6:37:45 | |||
| 3 | 8:14:56 | 8:19:56 | |||
| 4 | 9:51:12 | 9:56:12 | |||
| 4 | 11:38:08 | 11:43:08 | |||
Table 9
Solution results of various algorithms in different scenarios"
| 场景 | 指标 | GA | GNSA | MPGA | MPGNSA |
| 场景1 | 最大适应度值 | ||||
| 平均适应度值 | |||||
| 最小适应度值 | |||||
| 任务完成数 | 265 | 265 | 265 | 265 | |
| 任务完成率/% | 100 | 100 | 100 | 100 | |
| 场景2 | 最大适应度值 | ||||
| 平均适应度值 | |||||
| 最小适应度值 | |||||
| 任务完成数 | 384 | 384 | 384 | 384 | |
| 任务完成率/% | 100 | 100 | 100 | 100 | |
| 场景3 | 最大适应度值 | ||||
| 平均适应度值 | |||||
| 最小适应度值 | |||||
| 任务完成数 | 516 | 516 | 516 | 516 | |
| 任务完成率/% | 100 | 100 | 100 | 100 |
| 1 | LEDKOV A, ASLANOV V. Review of contact and contactless active space debris removal approaches[J]. Progress in Aerospace Sciences, 2022, 134: 100858. |
| 2 |
YANG K, WU Y L. Improving international governance of space debris in the era of large constellations of small satellites and China’s response[J]. Advances in Space Research, 2023, 72 (7): 2607- 2615.
doi: 10.1016/j.asr.2022.06.061 |
| 3 |
LI G Q, LIU J, JIANG H, et al. Research on the efficient space debris observation method based on optical satellite constellations[J]. Applied Sciences, 2023, 13 (7): 4127.
doi: 10.3390/app13074127 |
| 4 |
郑珍珍, 朱振才, 康一舟. 天基空间碎片可见光观测系统与关键技术发展概述[J]. 光学学报, 2022, 42 (17): 1712002.
doi: 10.3788/AOS202242.1712002 |
|
ZHENG Z Z, ZHU Z C, KANG Y Z. Overview of space-based optical observation systems for space debris and development of key technologies[J]. Acta Optica Sinica, 2022, 42 (17): 1712002.
doi: 10.3788/AOS202242.1712002 |
|
| 5 | ZHANG G H, LI X H, HU G X, et al. Mission planning issues of imaging satellites: summary, discussion, and prospects[J]. International Journal of Aerospace Engineering, 2021, 2021 (1): 7819105. |
| 6 | HE L L, LIU X, LAPORTE G, et al. An improved adaptive large neighborhood search algorithm for multiple agile satellites scheduling[J]. Computers & Operations Research, 2018, 100(1): 12–25. |
| 7 | HE Y M, CHEN Y M, LU J M, et al. Scheduling multiple agile earth observation satellites with an edge computing framework and a constructive heuristic algorithm[J]. Journal of Systems Architecture, 2019, 95(1): 55–66. |
| 8 |
SHE Y C, LI S B, ZHAO Y B. Onboard mission planning for agile satellite using modified mixed-integer linear programming[J]. Aerospace Science and Technology, 2018, 72, 204- 216.
doi: 10.1016/j.ast.2017.11.009 |
| 9 | LEE K, KIM D J, CHUNG D W, et al. Optimal mission planning for multiple agile satellites using modified dynamic programming[J]. Aerospace, 2024, 21, 279- 289. |
| 10 |
张淳, 张强, 赵阳, 等. 一种面向成像卫星的启发式分层任务规划方法[J]. 航天控制, 2021, 39 (2): 45- 50.
doi: 10.3969/j.issn.1006-3242.2021.02.007 |
|
ZHANG C, ZHANG Q, ZHAO Y, et al. A heuristic layering mission planning algorithm for earth observation satellite[J]. Aerospace Control, 2021, 39 (2): 45- 50.
doi: 10.3969/j.issn.1006-3242.2021.02.007 |
|
| 11 |
LONG J, WU S M, HAN X D, et al. Autonomous task planning method for multi-satellite system based on a hybrid genetic algorithm[J]. Aerospace, 2023, 10 (1): 70.
doi: 10.3390/aerospace10010070 |
| 12 |
FEI H X, ZHANG X, LONG J, et al. Towards multi-satellite collaborative computing via task scheduling based on genetic algorithm[J]. Aerospace, 2023, 10 (2): 95.
doi: 10.3390/aerospace10020095 |
| 13 |
CHEN Y X, SHEN X, ZHANG G, et al. Multi-objective multi-satellite imaging mission planning algorithm for regional mapping based on deep reinforcement learning[J]. Remote Sensing, 2023, 15 (16): 3932.
doi: 10.3390/rs15163932 |
| 14 |
HUANG W Q, WANG H, YI D B, et al. A multiple agile satellite staring observation mission planning method for dense regions[J]. Remote Sensing, 2023, 15 (22): 5317.
doi: 10.3390/rs15225317 |
| 15 | ZHOU Z B, CHEN E M, WU F, et al. Multi-satellite scheduling problem with marginal decreasing imaging duration: an improved adaptive ant colony algorithm[J]. Computers & Industrial Engineering, 2023, 176, 108890. |
| 16 |
LU Z Z, SHEN X, LI D R, et al. Multiple super-agile satellite collaborative mission planning for area target imaging[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 117, 103211.
doi: 10.1016/j.jag.2023.103211 |
| 17 | 樊慧晶, 章文毅, 田妙苗, 等. 基于粒子群算法的卫星任务地面站资源调度方法[J]. 中国科学院大学学报, 2022, 39 (6): 801- 808. |
| FAN H J, ZHANG W Y, TIAN M M, et al. A resource scheduling method for satellite mission ground station based on particle swarm optimization algorithm[J]. Journal of University of Chinese Academy of Sciences, 2022, 39 (6): 801- 808. | |
| 18 |
彭双, 伍江江, 陈浩, 等. 基于注意力神经网络的对地观测卫星星上自主任务规划方法[J]. 计算机科学, 2022, 49 (7): 242- 247.
doi: 10.11896/jsjkx.210500093 |
|
PENG S, WU J J, CHEN H, et al. Satellite onboard observation task planning based on attention neural network[J]. Computer Science, 2022, 49 (7): 242- 247.
doi: 10.11896/jsjkx.210500093 |
|
| 19 |
LI D L, WANG H J, YANG Z, et al. An online distributed satellite cooperative observation scheduling algorithm based on multiagent deep reinforcement learning[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18 (11): 1901- 1905.
doi: 10.1109/LGRS.2020.3009823 |
| 20 | 冯朝. 天基空间目标光学定轨方法研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2023. |
| FENG Z. Study on space-based optical orbit determination method for space targets[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2023. | |
| 21 | 李彬, 陈俊宇, 桑吉章, 等. 天基光学观测条件下的空间目标轨道编目[C]//第2届中国空天安全会议, 2017. |
| LI B, CHEN J Y, SANG J Z, et al. Orbit catalog of space objects using space-based optical observations[C]//Proc. of the 2nd Chinese Aerospace Safety Symposium, 2017. | |
| 22 | LI J H, SUN G, WU Q Q, et al. Collaborative ground-space communications via evolutionary multi-objective deep reinforcement learning[J]. IEEE Journal on Selected Areas in Communications, 2024, 24 (12): 3395- 3411. |
| 23 |
BHADOURIA V S, CHAKRABORTY S, BUCH S D, et al. Base station location generation algorithm for satellite-terrestrial co-existence studies[J]. International Journal of Satellite Communications and Networking, 2024, 42 (1): 86- 96.
doi: 10.1002/sat.1501 |
| 24 | QI J T, GUO J J, WANG M M, et al. A cooperative autonomous scheduling approach for multiple earth observation satellites with intensive missions[J]. IEEE Access, 2021, 9(1): 61646–61661. |
| 25 |
LU C, SHI J F, LI B L, et al. Dynamic resource allocation for low earth orbit satellite networks[J]. Physical Communication, 2024, 67, 102498.
doi: 10.1016/j.phycom.2024.102498 |
| 26 |
ZHOU Z, NING Y L, ZHOU X Y, et al. Improved artificial bee colony algorithm-based channel allocation scheme in low earth orbit satellite downlinks[J]. Computers and Electrical Engineering, 2023, 110, 108838.
doi: 10.1016/j.compeleceng.2023.108838 |
| 27 |
KRIGMAN S, GRINSHPOUN T, DERY L, et al. Scheduling of earth observing satellites using distributed constraint optimization[J]. Journal of Scheduling, 2024, 27 (5): 507- 524.
doi: 10.1007/s10951-024-00816-x |
| 28 |
XIE D D, HUANG Y W, YAN C X, et al. Determination of field of view of a dawn–dusk sun-synchronous orbit satellite based on improved observation mode[J]. Applied Sciences, 2022, 12 (15): 7475.
doi: 10.3390/app12157475 |
| 29 |
ROEVA O, ZOTEVA D, ROEVA G, et al. An effective hybrid metaheuristic approach based on the genetic algorithm[J]. Mathematics, 2024, 12 (23): 3815.
doi: 10.3390/math12233815 |
| 30 | HAMLAOUI O, HAJJI M K, HADDA H. A simulated annealing metaheuristic approach to hybrid flow shop scheduling problem[J]. Advances in Industrial and Manufacturing Engineering, 2024, 9 (1): 100144. |
| 31 |
PHAN T, HUANG T, DILKINA B, et al. Adaptive anytime multi-agent path finding using bandit-based large neighborhood search[J]. 38th AAAI Conference on Artificial Intelligence, 2024, 38 (16): 17514- 17522.
doi: 10.1609/aaai.v38i16.29701 |
| [1] | Jianbo YUAN, Yonghao DU, Yingguo CHEN, Yongming HE. Research on imaging satellite mission planning model and algorithm for point-cluster and large-region targets [J]. Systems Engineering and Electronics, 2025, 47(9): 2939-2950. |
| [2] | Liufang FU, Linzhou XU, Ming ZHOU, Xiaoming DONG, Zhu KOU. Deployment method for T-Rn type multistatic sonar based on twice optization [J]. Systems Engineering and Electronics, 2025, 47(5): 1600-1608. |
| [3] | Zhengyang SUN, Ye DU. Satellite network routing optimization method based on improved firefly algorithm [J]. Systems Engineering and Electronics, 2025, 47(4): 1346-1354. |
| [4] | Dawang WANG, Zhifeng LU, Guohua WU. Research on resource scheduling of fire control radar networking based on adaptive variable neighborhood search [J]. Systems Engineering and Electronics, 2025, 47(2): 496-507. |
| [5] | Haonan WU, Wei HAN, Zishuang PAN, Fang GUO, Xichao SU. Multi-layer coding genetic algorithm-based approach to force action planning for carrier aircraft fleets [J]. Systems Engineering and Electronics, 2025, 47(2): 555-567. |
| [6] | Xinyu QI, Zhi ZHANG, Xiaobing SHANG, Yiqiong ZHANG, Lichao JIANG, Yuexin ZHOU. Robust trajectory planning for ship collision avoidance based on polynomial chaotic expansion [J]. Systems Engineering and Electronics, 2025, 47(2): 621-632. |
| [7] | Qin LEI, Yanbing GAO, Yufeng ZHOU, Zhibin WU. Multi-delivery option path planning based on improved ALNS algorithm [J]. Systems Engineering and Electronics, 2025, 47(1): 173-181. |
| [8] | Peiqi WANG, Rusheng JU, Miao ZHANG, Wei DUAN. Data collection strategy of HLA simulation system based on non-dominated genetic algorithm [J]. Systems Engineering and Electronics, 2024, 46(9): 3103-3111. |
| [9] | Xin XI, Gaogao LIU, Qiang LIU, Dongjie HUANG. Distributed jamming optimal array method for sidelobe cancellation [J]. Systems Engineering and Electronics, 2024, 46(8): 2623-2628. |
| [10] | Qiangqiang XU, Hua CHAI. Optimization of task dispatch plan for vehicular optical observation equipment based on NSGA-Ⅱ [J]. Systems Engineering and Electronics, 2024, 46(7): 2393-2400. |
| [11] | Yangyang LI, Junren LUO, Wanpeng ZHANG, Fengtao XIANG. Genetic-evolutionary bi-level mission planning algorithm for multi-satellite cooperative observation [J]. Systems Engineering and Electronics, 2024, 46(6): 2044-2053. |
| [12] | Yiming CAI, Li MA, Hengyang LU, Wie FANG. Full process parallel genetic algorithm for Bayesian network structure learning [J]. Systems Engineering and Electronics, 2024, 46(5): 1703-1711. |
| [13] | Zekun YAO, Chao WANG, Qingzhan SHI, Shaoqing ZHANG, Naichang YUAN. Cooperative jamming resource allocation model for radar network based on improved discrete simulated annealing genetic algorithm [J]. Systems Engineering and Electronics, 2024, 46(3): 824-830. |
| [14] | Shuai YIN, Jianhui YU, Bin SONG, Yanning GUO, Chuanjiang LI, Yueyong LYU. GEO target servicing mission scheduling based on multi-group chaotic genetic algorithm [J]. Systems Engineering and Electronics, 2024, 46(3): 914-921. |
| [15] | Yuting ZHANG, Jingyu YANG. Capability-based defense resource allocation method [J]. Systems Engineering and Electronics, 2024, 46(2): 599-604. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||