Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (9): 2939-2950.doi: 10.12305/j.issn.1001-506X.2025.09.15
• Systems Engineering • Previous Articles
Jianbo YUAN(
), Yonghao DU(
), Yingguo CHEN(
), Yongming HE(
)
Received:2023-06-15
Online:2025-09-25
Published:2025-09-16
Contact:
Yonghao DU
E-mail:yuanjianbo_0316@qq.com;duyonghao15@163.com;argguo@163.com;heyongming0@163.com
CLC Number:
Jianbo YUAN, Yonghao DU, Yingguo CHEN, Yongming HE. Research on imaging satellite mission planning model and algorithm for point-cluster and large-region targets[J]. Systems Engineering and Electronics, 2025, 47(9): 2939-2950.
Table 1
Symbol description"
| 符号 | 释义 |
| T | 任务集,T = |
| 点群目标任务集、大区域目标任务集 | |
| A | 大区域目标集合,A = {ai | i=1,2,3···} |
| S | 卫星集合,S = {sj | j = 1,2,3···} |
| H | 数传站集合,H = {hk | k = 1,2,3···} |
| G | 离散化的网格点集合,G = {gm | m = 1,2,3···} |
| ci | 第i个大区域目标的总面积 |
| 第m个网格点包含大区域目标ai的面积 | |
| Xi | 任务ti的成像机会集合 |
| Yi | 任务ti的数传机会集合 |
| xij | 0-1决策变量,若任务ti的成像动作在其第j个成像机会内执行,则 xij = 1;否则xij = 0 |
| yij | 0-1决策变量,若任务ti的数传动作在其第j个数传机会内执行,则 yij = 1;否则yij = 0 |
| zi | 决策变量,表示任务ti的成像条带在其成像方向上的延长比例, 简称条带延长率 |
| fi | 任务ti的收益 |
| mi | 任务ti成像动作所产生的数据量 |
| qi | 任务ti成像动作耗电量 |
| 任务ti成像动作的开始时间、结束时间 | |
| 任务ti数传动作的开始时间、结束时间 | |
| so(ti) | 执行任务ti成像动作的卫星 |
| sd(ti) | 执行任务ti数传动作的卫星 |
| s(ti) | 执行任务ti的卫星 |
| h(ti) | 执行任务ti的数传站 |
| o(ti) | 执行任务ti所在的卫星轨道 |
| Oj | 卫星sj的轨道集合 |
| ojk | 卫星sj第k次过境形成的轨道 |
| Mj | 卫星sj的固存容量上限 |
| Qj | 卫星sj的电量上限 |
| ∆K( | 任务 |
| ∆N | 卫星执行成像动作与数传动作间转换时间最小值 |
| ∆D | 同一卫星对不同数传站执行数传动作转换时间最小值 |
| ∆P | 同一数传站接收不同卫星数传动作转换时间最小值 |
| Tj | 卫星sj执行的任务序列 |
| w(ti, time) | 0-1变量,若time时刻下任务ti已完成成像动作, 则w(ti, time) = 1,否则w(ti, time) = 0 |
| d(ti, time) | 0-1变量,若time时刻下任务ti已完成数传动作, 则d(ti, time) = 1,否则d(ti, time) = 0 |
| vm | 0-1变量,若网格gm被条带所覆盖,则vm = 1;否则vm = 0 |
| φi | 第i个大区域目标的覆盖率 |
| 1 |
LIU X L, LAPORTE G, CHEN Y W, et al. An adaptive large neighborhood search metaheuristic for agile satellite scheduling with time dependent transition time[J]. Computers and Operations Research, 2017, 86, 41- 53.
doi: 10.1016/j.cor.2017.04.006 |
| 2 |
XU R, CHEN H P, LIANG X L, et al. Priority based constructive algorithms for scheduling agile earth observation satellites with total priority maximization[J]. Expert Systems with Applications, 2016, 51, 195- 206.
doi: 10.1016/j.eswa.2015.12.039 |
| 3 |
QI J T, GUO J J, WANG M M, et al. A cooperative autonomous scheduling approach for multiple earth observation satellites with intensive missions[J]. IEEE Access, 2021, 9, 61646- 61661.
doi: 10.1109/ACCESS.2021.3075059 |
| 4 | WANG S, LIN Z, CHENG J H, et al. Task scheduling and attitude planning for agile earth observation satellite with intensive tasks[J]. Aerospace Science and Technology, 2019, 90 (4): 23- 33. |
| 5 |
BARKAOUI M, BERGER J. A new hybrid genetic algorithm for the collection scheduling problem for a satellite constellation[J]. Journal of the Operational Research Society, 2020, 71 (9): 1390- 1410.
doi: 10.1080/01605682.2019.1609891 |
| 6 |
CHANG Z X, ZHOU Z B, YAO F, et al. Observation scheduling problem for AEOS with a comprehensive task clustering[J]. Journal of Systems Engineering and Electronics, 2021, 32 (2): 347- 364.
doi: 10.23919/JSEE.2021.000029 |
| 7 |
WU G H, WANG H L, PEDRYCZ W, et al. Satellite observation scheduling with a novel adaptive simulated annealing algorithm and a dynamic task clustering strategy[J]. Computers and Industrial Engineering, 2017, 113, 576- 588.
doi: 10.1016/j.cie.2017.09.050 |
| 8 |
LU Z H, SHEN X, LI D R, et al. Integrated imaging mission planning modeling method for multi-type targets for super-agile earth observation satellite[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 4156- 4169.
doi: 10.1109/JSTARS.2022.3176951 |
| 9 |
LIU X L, BAI B C, CHEN Y W, et al. Multi satellites scheduling algorithm based on task merging mechanism[J]. Applied Mathematics and Computation, 2014, 230, 687- 700.
doi: 10.1016/j.amc.2013.12.109 |
| 10 |
DU B, LI S. A new multi-satellite autonomous mission allocation and planning method[J]. Acta Astronautica, 2019, 163, 287- 298.
doi: 10.1016/j.actaastro.2018.11.001 |
| 11 |
ZHAO Y B, DU B, LI S. Agile satellite mission planning via task clustering and double-layer tabu algorithm[J]. Computer Modeling in Engineering and Sciences, 2020, 122 (1): 235- 257.
doi: 10.32604/cmes.2020.08070 |
| 12 | 潘耀, 饶启龙, 池忠明, 等. 改进的遥感卫星成像任务单轨最优团划分聚类方法[J]. 上海航天, 2018, 35 (3): 34- 40. |
| PAN Y, RAO Q L, CHI Z M, et al. Improved clustering method of spot target based on best clique partition in single orbit for remote sensing satellite imaging[J]. Aerospace Shanghai, 2018, 35 (3): 34- 40. | |
| 13 |
张聪, 袁利, 王云鹏, 等. 基于智能聚类的遥感卫星成像任务自主聚合方法[J]. 空间控制技术与应用, 2022, 48 (5): 47- 55.
doi: 10.3969/j.issn.1674-1579.2022.05.006 |
|
ZHANG C, YUAN L, WANG Y P, et al. Autonomous aggregation method for imaging task of observation satellite based on intelligent clustering[J]. Aerospace Control and Application, 2022, 48 (5): 47- 55.
doi: 10.3969/j.issn.1674-1579.2022.05.006 |
|
| 14 | 耿远卓, 郭延宁, 李传江, 等. 敏捷凝视卫星密集点目标聚类与最优观测规划[J]. 控制与决策, 2020, 35 (3): 613- 621. |
| GENG Y Z, GUO Y N, LI C J, et al. Optimal mission planning with task clustering for intensive point targets observation of staring mode agile satellite[J]. Control and Decision, 2020, 35 (3): 613- 621. | |
| 15 |
余婧, 喜进军, 于龙江, 等. 敏捷卫星同轨多条带拼幅成像模式研究[J]. 航天器工程, 2015, 24 (2): 27- 34.
doi: 10.3969/j.issn.1673-8748.2015.02.005 |
|
YU J, XI J J, YU L J, et al. Study of one-orbit multi-stripes splicing imaging for agile satellite[J]. Spacecraft Engineering, 2015, 24 (2): 27- 34.
doi: 10.3969/j.issn.1673-8748.2015.02.005 |
|
| 16 |
LEMAITRE M, VERFAILLIE G, JOUHAUD F, et al. Selecting and scheduling observations of agile satellites[J]. Aerospace Science and Technology, 2002, 6 (5): 367- 381.
doi: 10.1016/S1270-9638(02)01173-2 |
| 17 | 章登义, 郭雷, 王骞, 等. 一种面向区域目标的敏捷成像卫星单轨调度方法[J]. 武汉大学学报(信息科学版), 2014, 39 (8): 901- 905. |
| ZHANG D Y, GUO L, WANG Q, et al. An improved single-orbit scheduling method for agile imaging satellite towards area target[J]. Geomatics and Information Science of Wuhan University, 2014, 39 (8): 901- 905. | |
| 18 |
杨文沅, 贺仁杰, 耿西英智, 等. 面向区域目标的敏捷卫星非沿迹条带划分方法[J]. 科学技术与工程, 2016, 16 (22): 82- 87.
doi: 10.3969/j.issn.1671-1815.2016.22.014 |
|
YANG W Y, HE R J, GENG X Y Z, et al. Area target oriented non-along-with-track strip partitioning method for agile satellite[J]. Science Technology and Engineering, 2016, 16 (22): 82- 87.
doi: 10.3969/j.issn.1671-1815.2016.22.014 |
|
| 19 | GU Y, HAN C, CHEN Y H, et al. Large region targets observation scheduling by multiple satellites using resampling particle swarm optimization[J]. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59 (2): 1800- 1815. |
| 20 |
LU Z H, SHEN X, LI D R, et al. Multiple super-agile satellite collaborative mission planning for area target imaging[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 117, 103211.
doi: 10.1016/j.jag.2023.103211 |
| 21 | 陈晟宗, 张纪会, 于守水, 等. 求解旅行商问题的波动温控模拟退火算法[J]. 控制与决策, 2023, 38 (4): 911- 920. |
| CHEN S Z, ZHANG J H, YU S S, et al. A Simulated annealing algorithm with wave temperature control for the traveling salesman problem[J]. Control and Decision, 2023, 38 (4): 911- 920. | |
| 22 |
ZHANG C, CHEN J Y, LI Y B, et al. Satellite group autonomous operation mechanism and planning algorithm for marine target surveillance[J]. Chinese Journal of Aeronautics, 2019, 32 (4): 991- 998.
doi: 10.1016/j.cja.2019.02.005 |
| 23 |
SONG Y J, XING L N, CHEN Y W. Two-stage hybrid planning method for multi-satellite joint observation planning problem considering task splitting[J]. Computers and Industrial Engineering, 2022, 174, 108795.
doi: 10.1016/j.cie.2022.108795 |
| 24 |
ZHIBO E, SHI R H, GAN L, et al. Multi-satellites imaging scheduling using individual reconfiguration based integer coding genetic algorithm[J]. Acta Astronautica, 2021, 178, 645- 657.
doi: 10.1016/j.actaastro.2020.08.041 |
| 25 |
DU Y H, WANG T, XIN B, et al. A data-driven parallel scheduling approach for multiple agile earth observation satellites[J]. IEEE Trans. on Evolutionary Computation, 2020, 24 (4): 679- 693.
doi: 10.1109/TEVC.2019.2934148 |
| 26 |
JIANG X M, SONG Y J, XING L N. Dual-population artificial bee colony algorithm for joint observation satellite mission planning problem[J]. IEEE Access, 2022, 10, 28911- 28921.
doi: 10.1109/ACCESS.2022.3157286 |
| 27 |
SERGE R, IGOR T, SERGEI I, et al. Quantum algorithms applied to satellite mission planning for earth observation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 7062- 7075.
doi: 10.1109/JSTARS.2023.3287154 |
| 28 | CHEN Y X, SHEN X, ZHANG G, et al. Large-scale multi-objective imaging satellite task planning algorithm for vast area mapping[J]. Remote Sensing, 2023, 15 (17): 4178. |
| 29 | LONG J, WU S M, HAN X D, et al. Autonomous task planning method for multi-satellite system based on a hybrid genetic algorithm[J]. Aerospace, 2023, 10 (1): 70. |
| 30 |
LIN F T, KAO C Y, HSU C C. Applying the genetic approach to simulated annealing in solving some NP-Hard problems[J]. IEEE Trans. on Systems, Man, and Cybernetics, 1993, 23 (6): 1752- 1767.
doi: 10.1109/21.257766 |
| [1] | Yujie LIU, Kaikai CUI, Wei HAN, Yue LI. Research on departure planning of carrier aircraft based on IPSO [J]. Systems Engineering and Electronics, 2024, 46(4): 1337-1345. |
| [2] | Zekun YAO, Chao WANG, Qingzhan SHI, Shaoqing ZHANG, Naichang YUAN. Cooperative jamming resource allocation model for radar network based on improved discrete simulated annealing genetic algorithm [J]. Systems Engineering and Electronics, 2024, 46(3): 824-830. |
| [3] | Yue RAO, Jian YANG, Guomin SUN, Wei ZHANG, Huaizong SHAO, Jingran LIN. Multi-beam satellite dynamic resource allocation method based on improved SA-NSGAⅡ [J]. Systems Engineering and Electronics, 2024, 46(12): 4222-4230. |
| [4] | Liyao WU, Xichao SU, Lei WANG, Zishuang PAN. Research of formation rendezvous control for manned/unmanned aerial vehicles formation [J]. Systems Engineering and Electronics, 2023, 45(7): 2192-2202. |
| [5] | Xuening CHANG, Jianmai SHI, Chao CHEN, Jincai HUANG. Multi-stage weapon target assignment method based on Hungarian simulated annealing algorithms [J]. Systems Engineering and Electronics, 2023, 45(11): 3516-3523. |
| [6] | Fuyu LU, Ningning TONG, Weike FENG, Pengcheng WAN. Adaptive hybrid annealing particle swarm optimization algorithm [J]. Systems Engineering and Electronics, 2022, 44(11): 3470-3476. |
| [7] | Yue LIU, Xiaoqing ZHONG, Jinyu FU, Xiang LI. Stereo matching algorithm based on hybrid optimization method [J]. Systems Engineering and Electronics, 2020, 42(12): 2692-2699. |
| [8] | Jiadong YI, Jie YANG. Radar signal recognition based on IFOA-SA-BP neural network [J]. Systems Engineering and Electronics, 2020, 42(12): 2735-2741. |
| [9] | Tao XU, Zhishuai WU, Min LU, Zonglei LYU, Zhonghu LI. Optimization model of hub-and-spoke network for congestion problem [J]. Systems Engineering and Electronics, 2020, 42(11): 2553-2559. |
| [10] | LIU Jianye, WANG Hua, ZHOU Wanmeng. LEO constellation sensor resources scheduling algorithm based on Genetic and Simulated annealing [J]. Systems Engineering and Electronics, 2018, 40(11): 2476-. |
| [11] | HE Yongming, CHEN Yingwu, XING Lining, YUAN Zang, LI Guoliang. Autonomous mission planning system design for novel imaging satellite [J]. Systems Engineering and Electronics, 2017, 39(4): 806-813. |
| [12] | WANG Minle, FAN Yangtao. Intelligent solving algorithm for effectsbased firepower allocation model of conventional missiles [J]. Systems Engineering and Electronics, 2017, 39(11): 2509-2514. |
| [13] | LI An-da, HE Zhen, HE Shu-guang. Critical to quality characteristics identification for complex products using GSA [J]. Systems Engineering and Electronics, 2015, 37(9): 2073-2079. |
| [14] | YAO Ying-biao, WANG Xuan. Modified hybrid genetic algorithm for parallel task scheduling of multiprocessors [J]. Systems Engineering and Electronics, 2015, 37(8): 1928-1935. |
| [15] | YAN Qing-qing, SHEN Huai-rong, SHAO Qiong-ling. Space object ground-based surveillance scheduling based on genetic-simulated annealing algorithm [J]. Systems Engineering and Electronics, 2015, 37(12): 2764-2771. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||