Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (9): 2905-2912.doi: 10.12305/j.issn.1001-506X.2025.09.12
• Sensors and Signal Processing • Previous Articles
Guohui ZHU(
), Lin YANG(
), Yang WANG(
), Taoye ZHENG(
)
Received:2024-04-23
Online:2025-09-25
Published:2025-09-16
Contact:
Guohui ZHU
E-mail:zhugh@stu.xidian.edu.cn;yangl@stu.xidian.edu.cn;water361360@126.com;zhengtaoye@sina.com
CLC Number:
Guohui ZHU, Lin YANG, Yang WANG, Taoye ZHENG. A modified PRF design method for high-speed maneuvering-platform SAR imaging[J]. Systems Engineering and Electronics, 2025, 47(9): 2905-2912.
| 1 | BEKAR A, ANTONIOU M, BAKER C J. Low-cost, high-resolution, drone-borne SAR imaging[J]. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60: 5208811. |
| 2 | JIANG P Y, ZHANG Z, ZHANG B C, et al. A novel TomoSAR imaging method with few observations based on nested array[J]. IET Radar, Sonar & Navigation, 2023, 17 (6): 925- 938. |
| 3 |
ZHAO Y W, WEI X E, CHONG J S, et al. SAR imaging algorithm of ocean waves based on optimum subaperture[J]. Sensors, 2022, 22 (3): 1299.
doi: 10.3390/s22031299 |
| 4 |
TIAN H, DONG C Z, YIN H C, et al. Airborne sparse flight array SAR 3D imaging based on compressed sensing in frequency domain[J]. Journal of Systems Engineering and Electronics, 2023, 34 (1): 56- 67.
doi: 10.23919/JSEE.2022.000125 |
| 5 |
金秋, 王雨晗, 杨果, 等. 高速平台SAR脉内多普勒效应误差分析和校正[J]. 雷达科学与技术, 2023, 21 (3): 237- 246.
doi: 10.3969/j.issn.1672-2337.2023.03.001 |
|
JIN Q, WANG Y H, YANG G, et al. Error analysis and correction of doppler effect for SAR on high-speed platform[J]. Radar Science and Technology, 2023, 21 (3): 237- 246.
doi: 10.3969/j.issn.1672-2337.2023.03.001 |
|
| 6 |
GUO X, YAO Y Y, FU W D, et al. The demand for satellite attitude error for high-resolution spaceborne SAR image quality[J]. Journal of Physics: Conference Series, 2023, 2569, 012010.
doi: 10.1088/1742-6596/2569/1/012010 |
| 7 | WU J P, FENG D, WANG J, et al. SAR imaging from azimuth missing raw data via sparsity adaptive StOMP[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4501605. |
| 8 |
WEI J Y, LI Y C, YANG R, et al. Method of high signal-to-noise ratio and wide swath SAR imaging based on continuous pulse coding[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 2185- 2196.
doi: 10.1109/JSTARS.2022.3153118 |
| 9 |
GUO Y N, WANG P B, CHEN J, et al. A novel imaging algorithm for high-resolution wide-swath space-borne SAR based on a spatial-variant equivalent squint range model[J]. Remote Sensing, 2022, 14 (2): 368.
doi: 10.3390/rs14020368 |
| 10 | 郭媛, 索志勇, 王婷婷, 等. 弹载双基前视SAR构型参数优化设计方法[J]. 系统工程与电子技术, 2023, 45 (11): 3449- 3454. |
| GUO Y, SUO Z Y, WANG T T, et al. Configuration parameter optimization design method of MBFL-SAR[J]. Systems Engineering and Electronics, 2023, 45 (11): 3449- 3454. | |
| 11 |
周鹏, 赵家兴, 吕伟强, 等. 星载SAR系统参数设计过程自动化方法研究[J]. 雷达科学与技术, 2023, 21 (4): 440- 446.
doi: 10.3969/j.issn.1672-2337.2023.04.011 |
|
ZHOU P, ZHAO J X, LV W Q, et al. Research on automatic method of parameter design process of spaceborne SAR system[J]. Radar Science and Technology, 2023, 21 (4): 440- 446.
doi: 10.3969/j.issn.1672-2337.2023.04.011 |
|
| 12 |
FU R Y, ZHANG D D, SUN Y H, et al. Research of linear charging for repetition-frequency pulse power supply[J]. IEEE Trans. on Plasma Science, 2017, 45 (7): 1585- 1590.
doi: 10.1109/TPS.2017.2706281 |
| 13 | YIN W, YANG W F, DING Z G, et al. Pulse repetition frequency design for geosynchronous SAR in elliptical orbit[C]// Proc. of the IET International Radar Conference, 2015. |
| 14 |
KA M H, BASKAKOV A I. Selection of pulse repetition frequency in high-precision oceanographic radar altimeters[J]. IEEE Trans. on Geoscience and Remote Sensing Letters, 2007, 4 (3): 345- 348.
doi: 10.1109/LGRS.2007.895679 |
| 15 |
邓欢, 李亚超, 全英汇, 等. 弹载下降段大前斜聚束SAR成像时序设计[J]. 系统工程与电子技术, 2016, 38 (5): 1032- 1038.
doi: 10.3969/j.issn.1001-506X.2016.05.10 |
|
DENG H, LI Y C, QUAN Y H, et al. Sequential design for highly squinted missile-borne spotlight SAR imaging on descent trajectory[J]. Systems Engineering and Electronics, 2016, 38 (5): 1032- 1038.
doi: 10.3969/j.issn.1001-506X.2016.05.10 |
|
| 16 | LIANG Y J, LIANG Y, ZHANG G, et al. A modified design method of pulse repetition frequency for synthetic aperture radar system based on the single point equivalent squint model[J]. IET Radar, Sonar & Navigation, 2021, 15 (7): 748- 759. |
| 17 |
杨琳, 朱国辉, 汪洋, 等. 高速机动平台SAR成像PRF设计方法[J]. 雷达科学与技术, 2024, 22 (5): 524- 531.
doi: 10.3969/j.issn.1672-2337.2024.05.007 |
|
YANG L, ZHU G H, WANG Y, et al. PRF design method for SAR Imaging of high-speed maneuvering platform[J]. Radar Science and Technology, 2024, 22 (5): 524- 531.
doi: 10.3969/j.issn.1672-2337.2024.05.007 |
|
| 18 | GEORGE W S. Introduction to airborne radar[M]. 2nd ed. Raleigh: SciTech Publishing, 1999. |
| 19 |
郑陶冶, 俞根苗. 弹载SAR脉冲重复频率设计研究[J]. 雷达科学与技术, 2010, 8 (3): 217- 222.
doi: 10.3969/j.issn.1672-2337.2010.03.006 |
|
ZHENG T Y, YU G M. Design method of pulse repetition frequency of missile-borne side-looking SAR[J]. Radar Science and Technology, 2010, 8 (3): 217- 222.
doi: 10.3969/j.issn.1672-2337.2010.03.006 |
|
| 20 | 谢华英, 卢再奇, 周剑雄, 等. 弹载平台聚束SAR成像脉冲重复频率设计[J]. 系统工程与电子技术, 2010, 32 (11): 2294- 2298. |
| XIE H Y, LU Z C, ZHOU J X, et al. Design of pulse repetition frequency for missile-borne spotlight SAR imaging[J]. Systems Engineering and Electronics, 2010, 32 (11): 2294- 2298. | |
| 21 | LI Y C, DENG H, QUAN Y H, et al. Sequence design for high squint spotlight SAR imaging on manoeuvring descending trajectory[J]. IET Radar, Sonar & Navigation, 2017, 11 (2): 219- 225. |
| 22 | 党彦锋, 梁毅, 张罡, 等. 机动平台俯冲大斜视SAR脉冲重复频率设计[J]. 系统工程与电子技术, 2020, 42 (3): 575- 581. |
| DANG Y F, LIANG Y, ZHANG G, et al. Pulse repetition frequency design for diving highly squinted synthetic aperture radar mounted on maneuvering platform[J]. Systems Engineering and Electronics, 2020, 42 (3): 575- 581. | |
| 23 | CUMMING I G, WONG F H. Digital processing of synthetic aperture radar data algorithms and implementation[M]. Norwood: Artech House, 2005. |
| 24 | WU Y M, YU Z, XIAO P, et al. Suppression of azimuth ambiguities in spaceborne SAR images using spectral selection and extrapolation[J]. IEEE Trans. on Geoscience and Remote Sensing, 2018, 56 (10): 6123- 6147. |
| 25 | LIU M, YU Z, LI C S. Azimuth ambiguity suppression for spaceborne SAR based on PRF micro-variation[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2013: 1325−1328. |
| 26 |
XU W, HUANG P P, ROBERT W, et al. Processing of multichannel sliding spotlight and TOPS synthetic aperture radar data[J]. IEEE Trans. on Geoscience and Remote Sensing, 2013, 51 (8): 4417- 4429.
doi: 10.1109/TGRS.2013.2265306 |
| 27 | TENG L, WU J J, HUANG Y L, et al. A deramping based omega-k algorithm for wide scene spotlight SAR[C]//Proc. of the IEEE International Conference on Systems and Informatics, 2012: 2089−2092. |
| 28 |
BIE B W, XING M D, XIA X G, et al. A frequency domain backprojection algorithm based on local cartesian coordinate and subregion range migration correction for high-squint SAR mounted on maneuvering platforms[J]. IEEE Trans. on Geoscience and Remote Sensing, 2018, 56 (12): 7086- 7101.
doi: 10.1109/TGRS.2018.2848249 |
| 29 | VU V T, SJOGREN T K, PETTERSSON, M I. On synthetic aperture radar azimuth and range resolution equations[J]. IEEE Trans. on Aerospace & Electronic Systems, 2012, 48 (2): 1764- 1769. |
| 30 |
WANG C H, XU J W, LIAO G S, et al. A range ambiguity resolution approach for high-resolution and wide-swath SAR imaging using frequency diverse array[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11 (2): 336- 346.
doi: 10.1109/JSTSP.2016.2605064 |
| [1] | Mingyu JIANG, Shunsheng ZHANG, Siyao XIAO. SAR target recognition based on lightweight cross-attention convolutional neural network [J]. Systems Engineering and Electronics, 2025, 47(9): 2853-2861. |
| [2] | Xiang LI, Ding ZENG, Junjun YIN, Xianyu GUO, Jian YANG. Guided filtering for polarimetric SAR image based on gradient fusion [J]. Systems Engineering and Electronics, 2025, 47(9): 2890-2904. |
| [3] | Weihong FU, Wenhong PENG, Naian LIU. SAR image small target detection method with hybrid attention optimization [J]. Systems Engineering and Electronics, 2025, 47(8): 2519-2526. |
| [4] | Kang NI, Wenjie JIA, Minrui ZOU, Zhizhong ZHENG. SAR object detection based on dynamic aggregation network [J]. Systems Engineering and Electronics, 2025, 47(8): 2527-2539. |
| [5] | Xinzheng ZHANG, Mengke YAN, Xiaolin ZHU. Noise pseudo-label tolerant semi-supervised SAR target recognition [J]. Systems Engineering and Electronics, 2025, 47(6): 1796-1805. |
| [6] | Ning LIU, Fangfang LI, Xinwu LI, Wen HONG. 3D reconstruction of high-rise buildings from SAR combined with footprint and phase information [J]. Systems Engineering and Electronics, 2025, 47(5): 1469-1486. |
| [7] | Yujia JIA, Siqian ZHANG, Tao TANG, Gangyao KUANG. Blind super-resolution reconstruction of airborne SAR real-time transmission images with enhanced scattering features [J]. Systems Engineering and Electronics, 2025, 47(3): 753-767. |
| [8] | Zhiwei YANG, Andong YANG, Gengchen LIANG, Xianghai LI, Xiaorui LI, Jie LIU. Multi-subband fusion for radial velocity ambiguity resolution [J]. Systems Engineering and Electronics, 2025, 47(3): 788-796. |
| [9] | Shilong CHEN, Lin LIU, Xiaobei WANG, Hansen ZENG, Yabo LIU, Xiang LIU. Fast compensation frequency-domain imaging processing algorithm for inter-pules frequency agility SAR [J]. Systems Engineering and Electronics, 2025, 47(3): 797-806. |
| [10] | Leilei JIA, Limin LIU, Jian DONG. Fast registration of optical and SAR images based on image structural information [J]. Systems Engineering and Electronics, 2025, 47(2): 428-441. |
| [11] | Yang MENG, Guoru ZHOU, Jie LI, Bingchen ZHANG. Discriminative sparse microwave imaging method based on structured dictionary learning [J]. Systems Engineering and Electronics, 2025, 47(1): 94-100. |
| [12] | Hongmeng CHEN, Jun LI, Jing LIU, Wei HUANG, Yingjie ZHANG, Yan CHEN, Yaobing LU. SAR-ISAR hybrid imaging method for sea surface ship target based on Radon time-frequency analysis [J]. Systems Engineering and Electronics, 2025, 47(1): 109-116. |
| [13] | Shangqu YAN, Yaowen FU, Wenpeng ZHANG, Wei YANG, Ruofeng YU, Fatong ZHANG. Review of the development status for ViSAR techniques [J]. Systems Engineering and Electronics, 2024, 46(8): 2650-2666. |
| [14] | Jin WANG, Xiangguang LENG, Zhongzhen SUN, Xiaojie MA, Yang YANG, Kefeng JI. Study of space/time varying defocus characteristics of complex moving ship targets in SAR imaging [J]. Systems Engineering and Electronics, 2024, 46(7): 2237-2255. |
| [15] | Shiqi XING, Penghui JI, Dahai DAI, Dejun FENG. Influence of azimuth-modulation jamming on high-resolution wide-swath multi-channel SAR [J]. Systems Engineering and Electronics, 2024, 46(6): 1946-1956. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||