Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (3): 788-796.doi: 10.12305/j.issn.1001-506X.2025.03.11
• Sensors and Signal Processing • Previous Articles
Zhiwei YANG1,*, Andong YANG1, Gengchen LIANG1, Xianghai LI1, Xiaorui LI2, Jie LIU2
Received:
2024-01-16
Online:
2025-03-28
Published:
2025-04-18
Contact:
Zhiwei YANG
CLC Number:
Zhiwei YANG, Andong YANG, Gengchen LIANG, Xianghai LI, Xiaorui LI, Jie LIU. Multi-subband fusion for radial velocity ambiguity resolution[J]. Systems Engineering and Electronics, 2025, 47(3): 788-796.
9 | HENNESST B, YARDLEY H, HOLDSWORTH D A, et al. Velocity ambiguity resolution using opposite chirprates with LFM radar[C]//Proc. of the IEEE International Radar Conference, 2023. |
10 | YANG L , WANG T , BAO Z . New method for solving the ambiguity of the radial velocity of a moving target[J]. Journal of Xidian University, 2009, 36 (2): 189- 192. |
11 | WANG Z F, YU J P, YANG Y H. Resolving range and velocity ambiguity effectively and efficiently with GPU[C]//Proc. of the International Conference on Radar, 2021: 1122-1126. |
12 | KAHLERT M, FEI T, TEBRUEGGE C, et al. Doppler ambiguity resolution for a pmcw automotive radar system[C]//Proc. of the 20th European Radar Conference, 2023: 73-76. |
13 | WANG Y X, ZHU S Q, LIAO G S, et al. Resolving Doppler ambiguity via spread phase alignment in FDA-MIMO radar[C]// Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2023. |
14 | ZHU J, LI Y, DUAN C D, et al. A range and velocity ambiguity resolution method based on ambiguity matrix completion and elimination with low SNR[C]//Proc. of the IEEE International Conference on Signal, Information and Data Processing, 2019. |
15 |
QUINT A , NUSS B , DIEWALD A , et al. System architecture for a compact high range resolution frequency comb OFDM radar[J]. International Journal of Microwave and Wireless Technologies, 2023, 15 (6): 975- 982.
doi: 10.1017/S1759078722001441 |
16 |
DING C , MU H L , ZHANG Y . A multicomponent linear frequency modulation signal-separation network for multi-moving-target imaging in the SAR-ground-moving-target indication system[J]. Remote Sensing, 2024, 16 (4): 605.
doi: 10.3390/rs16040605 |
17 | 郁文贤, 何劲, 舒汀, 等. 基于子带处理的宽带阵列雷达的干扰抑制方法[J]. 现代雷达, 2021, 43 (8): 1- 8. |
YU W X , HE J , SHU T , et al. Jamming cancellation method for wideband array radar based on subbanding[J]. Modern Radar, 2021, 43 (8): 1- 8. | |
18 | WANG Y P, LEI M, ZHANG Y, et al. A high precision ballistic target recognition framework using multi-subband fusion[C]// Proc. of the International Applied Computational Electromagnetics Society Symposium, 2023. |
19 |
HUANG Q , WEI S P , ZHANG L . Radar interferometric phase ambiguity resolution using viterbi algorithm for high-precision space target positioning[J]. IEEE Signal Processing Letters, 2023, 30, 1242- 1246.
doi: 10.1109/LSP.2023.3313092 |
20 | TRUNK G, BROCKETT S. Range and velocity ambiguity re-solution[C]//Proc. of the IEEE International Radar Conference, 1993: 146-149. |
1 | HUO T Y, LI Y K, YANG C X, et al. A novel imaging method for MEO SAR-GMTI systems[C]//Proc. of the IEEE Inter-national Geoscience and Remote Sensing Symposium, 2022: 2498-2501. |
2 | ZHANG Y H, LI Y K. A study on range equation modeling for distributed MEO SAR-GMTI[C]// Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2023: 8154-8157. |
3 | ZONNO M, KRIEGER G, MITTERMAYER J, et al. A MirrorSAR-based single-pass dual-baseline SAR interferometer for the generation of very high quality DEMs[C]//Proc. of the European Conference on Synthetic Aperture Rada, 2018. |
4 | LI Y F, DUAN K Q, WANG Y L. Reduced-dimensional 3D-STAP with multibeam and multichannel for space-based radar[C]//Proc. of the IEEE International Radar Conference, 2023. |
5 | CHEN J Y, HUANG P H, XI P L, et al. Approach for along-track baseline distribution design in a multi-satellite distributed space-based radar system[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2023: 6125-6128. |
6 | HUANG L B , LI X , WAN W T , et al. Frequency diverse array introduced into SAR GMTI to mitigate blind velocity and Doppler ambiguity[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4507605. |
7 | DOERRY A W. A study of pulse-Doppler radar pulse repetition frequency[EB/OL]. [2023-12-16]. https://doi.org/10.2172/2431758. |
8 | DINH K N, VAN L N, NHU T N, et al. Ambiguity resolution for ground-based pulse-doppler radars using multiple medium PRF[C]//Proc. of the International Conference on Signal Processing Systems, 2022: 102-108. |
21 | LEI W, LONG T, HAN Y Q. Resolution of range and velocity ambiguity for a medium pulse Doppler radar[C]//Proc. of the IEEE International Radar Conference, 2000: 560-564. |
22 |
WANG W J , XIA X G . A closed-form robust chinese remainder theorem and its performance analysis[J]. IEEE Trans. on Signal Processing, 2010, 58 (11): 5655- 5666.
doi: 10.1109/TSP.2010.2066974 |
23 | CHI C , VISHNU H , BENG K T , et al. Robust resolution of velocity ambiguity for multifrequency pulse-to-pulse coherent doppler sonars[J]. IEEE Journal of Oceanic Engineering, 2019, 45 (4): 1506- 1515. |
24 | 张小涵, 刘润华, 汪枫, 等. 基于筛选法的球载雷达解距离模糊改进方法[J]. 中国电子科学研究院学报, 2019, 14 (2): 189- 195. |
25 |
CHEN J , YANG C G , WANG D , et al. Optical imaging method of synthetic-aperture radar for moving targets[J]. Remote Sensing, 2024, 16 (7): 1170.
doi: 10.3390/rs16071170 |
26 |
YANG B , LIU S Q , ZHANG H , et al. A velocity ambiguity resolution algorithm based on improved hypothetical phase compensation for TDM-MIMO radar traffic target imaging[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17, 3409- 3424.
doi: 10.1109/JSTARS.2024.3352082 |
27 | DING C S . Chinese remainder theorem[M]. Singapore: World Scientific, 1996. |
28 | WANG H , KAVEH M . Coherent signal-subspace processing for the detection and estimation of arrival wideband sources[J]. IEEE Trans. on Acoustics Speech & Signal Processing, 1985, 33 (4): 823- 831. |
29 | CAO S L , ZENG W G , XU H Q . Broadband DOA estimation method based on eigenvector space focusing[J]. Systems Engineering and Electronics, 2021, 43 (2): 294- 299. |
30 |
ROSEN P , HENSLEY S , JOUGHIN I , et al. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2000, 88 (3): 333- 382.
doi: 10.1109/5.838084 |
[1] | Yujia JIA, Siqian ZHANG, Tao TANG, Gangyao KUANG. Blind super-resolution reconstruction of airborne SAR real-time transmission images with enhanced scattering features [J]. Systems Engineering and Electronics, 2025, 47(3): 753-767. |
[2] | Leilei JIA, Limin LIU, Jian DONG. Fast registration of optical and SAR images based on image structural information [J]. Systems Engineering and Electronics, 2025, 47(2): 428-441. |
[3] | Yang MENG, Guoru ZHOU, Jie LI, Bingchen ZHANG. Discriminative sparse microwave imaging method based on structured dictionary learning [J]. Systems Engineering and Electronics, 2025, 47(1): 94-100. |
[4] | Hongmeng CHEN, Jun LI, Jing LIU, Wei HUANG, Yingjie ZHANG, Yan CHEN, Yaobing LU. SAR-ISAR hybrid imaging method for sea surface ship target based on Radon time-frequency analysis [J]. Systems Engineering and Electronics, 2025, 47(1): 109-116. |
[5] | Shangqu YAN, Yaowen FU, Wenpeng ZHANG, Wei YANG, Ruofeng YU, Fatong ZHANG. Review of the development status for ViSAR techniques [J]. Systems Engineering and Electronics, 2024, 46(8): 2650-2666. |
[6] | Jin WANG, Xiangguang LENG, Zhongzhen SUN, Xiaojie MA, Yang YANG, Kefeng JI. Study of space/time varying defocus characteristics of complex moving ship targets in SAR imaging [J]. Systems Engineering and Electronics, 2024, 46(7): 2237-2255. |
[7] | Shiqi XING, Penghui JI, Dahai DAI, Dejun FENG. Influence of azimuth-modulation jamming on high-resolution wide-swath multi-channel SAR [J]. Systems Engineering and Electronics, 2024, 46(6): 1946-1956. |
[8] | Ding ZENG, Junjun YIN, Jian YANG. Nonlocal means filter for polarimetric SAR images based on fusion distance [J]. Systems Engineering and Electronics, 2024, 46(5): 1493-1502. |
[9] | Zikang SHAO, Xiaoling ZHANG, Tianwen ZHANG, Tianjiao ZENG. SAR ship detection based on adaptive anchor and multi-scale enhancement [J]. Systems Engineering and Electronics, 2024, 46(4): 1204-1211. |
[10] | Tianwen ZHANG, Xiaoling ZHANG, Zikang SHAO, Tianjiao ZENG. Mask attention interaction for SAR ship instance segmentation [J]. Systems Engineering and Electronics, 2024, 46(3): 831-838. |
[11] | Xiaoyu FANG, Lijia HUANG. SAR ship detection algorithm based on global position information and fusion of residual feature [J]. Systems Engineering and Electronics, 2024, 46(3): 839-848. |
[12] | Qi HU, Shaohai HU, Shuaiqi LIU. Ship detection in SAR image based on multi-layer saliency model [J]. Systems Engineering and Electronics, 2024, 46(2): 478-487. |
[13] | Junyang GONG, Weihong FU, Naian LIU. Design of SAR image target contour enhancement preprocessing module [J]. Systems Engineering and Electronics, 2024, 46(12): 4010-4017. |
[14] | Zhongkai ZHAO, Yuhan SUN, Lu GAO. Interrupted sampling repeater jamming of two-dimensional joint modulation for SAR [J]. Systems Engineering and Electronics, 2024, 46(12): 4026-4033. |
[15] | Fengtao XUE, Tianyu SUN, Yimin YANG, Jian YANG. Rotated ship target detection algorithm in SAR images based on global feature fusion [J]. Systems Engineering and Electronics, 2024, 46(12): 4044-4053. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||