Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (12): 4044-4053.doi: 10.12305/j.issn.1001-506X.2024.12.13
• Sensors and Signal Processing • Previous Articles
Fengtao XUE1, Tianyu SUN2, Yimin YANG2, Jian YANG2,*
Received:
2023-06-12
Online:
2024-11-25
Published:
2024-12-30
Contact:
Jian YANG
CLC Number:
Fengtao XUE, Tianyu SUN, Yimin YANG, Jian YANG. Rotated ship target detection algorithm in SAR images based on global feature fusion[J]. Systems Engineering and Electronics, 2024, 46(12): 4044-4053.
Table 3
Performance comparison of different rotated detection algorithms"
方法 | 骨干网络 | AP50 | 运算次数 | 每秒帧数 | 参数量大小 |
Rotated Faster RCNN | ResNet50 | 0.831 5 | 63.26 | 62.4 | 41.14 |
Rotated RetinaNet | ResNet50 | 0.861 4 | 52.39 | 75.4 | 36.13 |
Oriented RCNN | ResNet50 | 0.883 7 | 63.28 | 62.4 | 41.13 |
S2ANet | ResNet50 | 0.873 2 | 49.05 | 80.5 | 38.76 |
Rotated FCOS | ResNet50 | 0.859 5 | 51.55 | 76.6 | 32.12 |
R3Det | ResNet50 | 0.812 2 | 82.17 | 48.1 | 41.81 |
本文方法 | Swin-Tiny | 0.894 8 | 79.06 | 49.9 | 58.65 |
1 | 邓云凯, 赵凤军, 王宇. 星载SAR技术的发展趋势及应用浅析[J]. 雷达学报, 2012, 1 (1): 1- 10. |
DENG Y K , ZHAO F J , WANG Y . Brief analysis on the development and application of spaceborne SAR[J]. Journal of Radars, 2012, 1 (1): 1- 10. | |
2 | 邓云凯, 禹卫东, 张衡, 等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9 (1): 1- 33. |
DENG Y K , YU W D , ZHANG H , et al. Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9 (1): 1- 33. | |
3 |
GIOVANNI M P , MARCO M , STEFANO T , et al. Very high resolution automotive SAR imaging from burst data[J]. Remote Sensing, 2023, 15 (3): 845- 864.
doi: 10.3390/rs15030845 |
4 | 李震宇. 机动平台SAR大斜视成像算法研究[D]. 西安: 西安电子科技大学, 2017. |
LI Z Y. Study on high squint imaging algorithms for SAR mounted on maneuvering platforms[D]. Xi'an: Xidian University, 2017. | |
5 |
YAN G X , CHEN Z H , WANG Y , et al. LssDet: a lightweight deep learning detector for SAR ship detection in high-resolution SAR images[J]. Remote Sensing, 2022, 14 (20): 5148- 5166.
doi: 10.3390/rs14205148 |
6 |
ZHAO K , LU R T , WANG S Y , et al. ST-YOLOA: a Swin-Transformer-based YOLO model with an attention mechanism for SAR ship detection under complex background[J]. Frontiers in Neurorobotics, 2023, 17, 1170163- 1170177.
doi: 10.3389/fnbot.2023.1170163 |
7 | 李焘. 基于SAR图像的舰船目标检测方法研究[D]. 西安: 西安电子科技大学, 2019. |
LI T. Study on ship detection methods for SAR images[D]. Xi'an: Xidian University, 2019. | |
8 |
LIU T , YANG Z Y , YANG J , et al. CFAR ship detection methods using compact polarimetric SAR in a K-Wishart distri- bution[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12 (10): 3737- 3745.
doi: 10.1109/JSTARS.2019.2923009 |
9 |
LI J W , CHEN J , CHENG P , et al. A survey on deep-learning-based real-time SAR ship detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 3218- 3247.
doi: 10.1109/JSTARS.2023.3244616 |
10 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2980-2988. |
11 | TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019: 9627-9636. |
12 |
CHANG Y L , ANAGAW A , CHANG L , et al. Ship detection based on YOLOv2 for SAR imagery[J]. Remote Sensing, 2019, 11 (7): 786- 799.
doi: 10.3390/rs11070786 |
13 | LI Y D , ZHANG S S , WANG W Q . A lightweight faster R-CNN for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19, 4006105. |
14 | MAO Y X, LI X J, LI Z L, et al. An anchor-free SAR ship detector with only 1.17 m parameters[C]//Proc. of the International Conference on Aviation Safety and Information Technology, 2020: 182-186. |
15 |
SUN Z Z , DAI M C , LENG X G , et al. An anchor-free detection method for ship targets in high-resolution SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 7799- 7816.
doi: 10.1109/JSTARS.2021.3099483 |
16 | YU J M , ZHOU G Y , ZHOU S B , et al. A fast and lightweight detection network for multi-scale SAR ship detection under complex back-grounds[J]. Remote Sensing, 2022, 14 (1): 31- 54. |
17 | 徐从安, 苏航, 李健伟, 等. RSDD-SAR: SAR舰船斜框检测数据集[J]. 雷达学报, 2022, 11 (4): 581- 599. |
XU C A , SU H , LI J W , et al. RSDD-SAR: rotated ship detection dataset in SAR images[J]. Journal of Radars, 2022, 11 (4): 581- 599. | |
18 | ZHOU Y , JIANG X , XU G Z , et al. PVT-SAR: an arbitrarily oriented SAR ship detector with pyramid vision transformer[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 16, 291- 305. |
19 |
ZHOU K X , ZHANG M , ZHAO H H , et al. Arbitrary-oriented ellipse detector for ship detection in remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 7151- 7162.
doi: 10.1109/JSTARS.2023.3267240 |
20 |
GE J Y , TANG Y P , GUO K T , et al. KeyShip: towards high-precision oriented SAR ship detection using key points[J]. Remote Sensing, 2023, 15 (8): 2035- 2060.
doi: 10.3390/rs15082035 |
21 |
ZHANG Y P , LU D D , QIU X L , et al. Scattering-point-guided RPN for oriented ship detection in SAR images[J]. Remote Sensing, 2023, 15 (5): 1411- 1432.
doi: 10.3390/rs15051411 |
22 | HAN J M , DING J , LI J , et al. Align deep features for oriented object detection[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 60, 5602511. |
23 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
24 | LIU Z, LIN Y T, CAO Y, et al. Swin-Transformer: hierarchical vision transformer using shifted windows[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022. |
25 | DOSOVITSKIY A, BEYER L, KOLESNI-KOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. [2023-06-05]. http://arxiv.org/abs2010.11929. |
26 | LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125. |
27 | YANG S, PEI Z Q, ZHOU F, et al. Rotated faster R-CNN for oriented object detection in aerial images[C]//Proc. of the 3rd International Conference on Robot Systems and Applications, 2020: 35-39. |
28 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2980-2988. |
29 | XIE X X, CHENG G, WANG J B, et al. Oriented R-CNN for object detection[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 3520-3529. |
30 | YANG X, YAN J C, FENG Z M, et al. R3Det: refined single-stage detector with feature refinement for rotating object[EB/OL]. [2023-05-10]. https://arxiv.org/pdf/1908.05612v4.pdf. |
[1] | Xiaobin LI, Dong XU, Xue YANG. Trajectory tracking control with predefined dynamic performance for underactuated autonomous underwater vehicle [J]. Systems Engineering and Electronics, 2024, 46(9): 3185-3197. |
[2] | Tianqi ZHANG, Zongfang YANG, Han ZOU, Kunran MA. Blind identification algorithm for polarization code parameters based on encoding matrix estimation [J]. Systems Engineering and Electronics, 2024, 46(9): 3221-3230. |
[3] | Lei WANG, Jin ZHANG, Qiuxuan YE. Spectrum sensing method based on cyclic spectrum and residual neural network in LDACS system [J]. Systems Engineering and Electronics, 2024, 46(9): 3231-3238. |
[4] | Shangqu YAN, Yaowen FU, Wenpeng ZHANG, Wei YANG, Ruofeng YU, Fatong ZHANG. Review of the development status for ViSAR techniques [J]. Systems Engineering and Electronics, 2024, 46(8): 2650-2666. |
[5] | Jin WANG, Xiangguang LENG, Zhongzhen SUN, Xiaojie MA, Yang YANG, Kefeng JI. Study of space/time varying defocus characteristics of complex moving ship targets in SAR imaging [J]. Systems Engineering and Electronics, 2024, 46(7): 2237-2255. |
[6] | Ruibin ZHANG, Mengtao ZHU, Yunjie LI. Radar transmitting signal generation method for modulation recognition network stealth [J]. Systems Engineering and Electronics, 2024, 46(7): 2256-2268. |
[7] | Bing QI, Jianhua CHENG, Yanchi ZHAO, Zili WANG. Precise temperature drift error estimation method for capacitive MEMS accelerometers based on micro-deformation analysis [J]. Systems Engineering and Electronics, 2024, 46(7): 2437-2445. |
[8] | Shiqi XING, Penghui JI, Dahai DAI, Dejun FENG. Influence of azimuth-modulation jamming on high-resolution wide-swath multi-channel SAR [J]. Systems Engineering and Electronics, 2024, 46(6): 1946-1956. |
[9] | Weiyi WU, Yunxian JIA, Xiangzheng JIANG, Xianming SHI, Jie LIU, Bin LIU, Enzhi DONG, Xi ZHU. Method for determining for carrying material varieties of stage task [J]. Systems Engineering and Electronics, 2024, 46(6): 2054-2064. |
[10] | Ding ZENG, Junjun YIN, Jian YANG. Nonlocal means filter for polarimetric SAR images based on fusion distance [J]. Systems Engineering and Electronics, 2024, 46(5): 1493-1502. |
[11] | Hao QING, Zhigeng FANG, Yuhong WANG, Xirui QIU. Combination prediction of civil aircraft demand based on grey-neural network [J]. Systems Engineering and Electronics, 2024, 46(5): 1665-1672. |
[12] | Zongfang YANG, Tianqi ZHANG, Kunran MA, Han ZOU. Blind identification of channel coding types based on deep neural networks [J]. Systems Engineering and Electronics, 2024, 46(5): 1820-1829. |
[13] | Zikang SHAO, Xiaoling ZHANG, Tianwen ZHANG, Tianjiao ZENG. SAR ship detection based on adaptive anchor and multi-scale enhancement [J]. Systems Engineering and Electronics, 2024, 46(4): 1204-1211. |
[14] | Tong HE, Qing LU, Jun ZHOU, Zongyi GUO. Line-of-sight angle constraint guidance with neural network interference observer [J]. Systems Engineering and Electronics, 2024, 46(4): 1372-1382. |
[15] | Hongjin ZHOU, Hui SONG, Wenliang FAN, Su WANG, Dongliang GU. Ship inertial navigation system position correction method based on Bayesian neural network [J]. Systems Engineering and Electronics, 2024, 46(4): 1393-1400. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||