Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (9): 2853-2861.doi: 10.12305/j.issn.1001-506X.2025.09.08
• Sensors and Signal Processing • Previous Articles
Mingyu JIANG(
), Shunsheng ZHANG(
), Siyao XIAO(
)
Received:2024-07-16
Online:2025-09-25
Published:2025-09-16
Contact:
Mingyu JIANG
E-mail:jmyob0808@yeah.net;zhangss@uestc.edu.cn;202222230113@std.uestc.edu.cn
CLC Number:
Mingyu JIANG, Shunsheng ZHANG, Siyao XIAO. SAR target recognition based on lightweight cross-attention convolutional neural network[J]. Systems Engineering and Electronics, 2025, 47(9): 2853-2861.
Table 1
LCA-CNN network configuration"
| 层类型 | 卷积核大小 | 核个数 | 输出维度 | 参数量 |
| Conv+BN+ReLU+CBAM | 3×3 | 16 | 112×112×16 | 480 |
| Conv+BN+ReLU+CBAM | 5×5 | 32 | 108×108×32 | 12 896 |
| Conv+BN+ReLU+CBAM | 7×7 | 64 | 102×102×64 | 100 544 |
| Conv+BN+ReLU+CBAM | 5×5 | 128 | 98×98×128 | 205 184 |
| MaxPooling | 2×2 | — | 49×49×128 | — |
| Conv+BN+ReLU+CBAM | 5×5 | 256 | 45×45×256 | 819 968 |
| MaxPooling | 2×2 | — | 22×22×256 | — |
| Conv+BN+ReLU+CBAM | 6×6 | 128 | 17×17×128 | 1 180 032 |
| MaxPooling | 2×2 | — | 8×8×128 | — |
| Conv+BN+ReLU+BAM | 5×5 | 64 | 4×4×64 | 204 992 |
| Conv | 4×4 | 7 | 1×1×7 | 7 175 |
| 总计 | — | — | — | 2 531 271 |
Table 4
Average recognition accuracy of different categories of airplanes obtained by different methods"
| 方法 | 平均识别准确率 | A220 | A330 | A320/321 | ARJ21 | Boeing737 | Boeing787 | 其他 |
| AlexNet[ | 0.670 6 | 0.68 | 0.98 | 0.77 | 0.64 | 0.54 | 0.60 | 0.81 |
| VGG-16[ | 0.724 0 | 0.72 | 0.96 | 1.00 | 0.66 | 0.61 | 0.66 | 0.84 |
| ResNet-101[ | 0.771 7 | 0.81 | 0.96 | 1.00 | 0.85 | 0.68 | 0.68 | 0.81 |
| A-ConvNets[ | 0.782 5 | 0.84 | 1.00 | 0.97 | 0.76 | 0.75 | 0.66 | 0.83 |
| ResNeXt-101(64×4d)[ | 0.781 9 | 0.79 | 0.96 | 0.97 | 0.83 | 0.74 | 0.70 | 0.81 |
| Swin Transformer[ | 0.279 4 | 0.49 | 0.21 | 0.00 | 0.02 | 0.40 | 0.22 | 0.22 |
| 所提方法 | 0.831 9 | 0.90 | 0.98 | 1.00 | 0.85 | 0.78 | 0.76 | 0.84 |
| 1 | DU L, WANG Z C, WANG Y, et al. Survey of research progress on target detection and discrimination of single-channel SAR images for complex scenes[J]. Journal of Radars, 2020, 9 (1): 34- 54. |
| 2 |
NOVAK L M, OWIRKA G J, BROWER W S. Performance of 10-and 20-target MSE classifiers[J]. IEEE Trans. on Aerospace and Electronic Systems, 2000, 36 (4): 1279- 1289.
doi: 10.1109/7.892675 |
| 3 |
唐宁, 高勋章, 黎湘. 基于几何散列法的ISAR像自动目标识别[J]. 系统工程与电子技术, 2012, 34 (4): 692- 697.
doi: 10.3969/j.issn.1001-506X.2012.04.10 |
|
TANG N, GAO X Z, LI X. Automatic target recognition of ISAR images based on geometric hash[J]. Journal of Systems Engineering and Electronics, 2012, 34 (4): 692- 697.
doi: 10.3969/j.issn.1001-506X.2012.04.10 |
|
| 4 |
张新征, 黄培康. 基于贝叶斯压缩感知的SAR目标识别[J]. 系统工程与电子技术, 2013, 35 (1): 40- 44.
doi: 10.3969/j.issn.1001-506X.2013.01.07 |
|
ZHANG X Z, HUANG P K. SAR ATR based on Bayesian compressive sensing[J]. Journal of Systems Engineering and Electronics, 2013, 35 (1): 40- 44.
doi: 10.3969/j.issn.1001-506X.2013.01.07 |
|
| 5 | MORGAN D A E. Deep convolutional neural networks for ATR from SAR imagery[C]//Proc. of the SPIE-Algorithms for Synthetic Aperture Radar Imagery XXII, 2015. |
| 6 | DING J, CHEN B, LIU H W, et al. Convolutional neural network with data augmentation for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13 (3): 364- 368. |
| 7 | CHEN S Z, WANG H P. SAR target recognition based on deep learning[C]//Proc. of the International Conference on Data Science and Advanced Analytics, 2014: 541−547. |
| 8 |
王彩云, 吴钇达, 王佳宁, 等. 基于改进的CNN和数据增强的SAR目标识别[J]. 系统工程与电子技术, 2022, 44 (8): 2483- 2487.
doi: 10.12305/j.issn.1001-506X.2022.08.12 |
|
WANG C Y, WU Y D, WANG J N, et al. SAR target recognition based on improved CNN and data augmentation[J]. Systems Engineering and Electronics, 2022, 44 (8): 2483- 2487.
doi: 10.12305/j.issn.1001-506X.2022.08.12 |
|
| 9 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386 |
| 10 | SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15 (1): 1929- 1958. |
| 11 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2024-06-16]. https://arxiv.org/pdf/1409.1556. |
| 12 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on computer Vision and Pattern Recognition. 2016: 770−778. |
| 13 | XIE S, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1492−1500. |
| 14 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015. |
| 15 |
邵嘉琦, 曲长文, 李健伟. 卷积神经网络对SAR目标识别性能分析[J]. 雷达科学与技术, 2018, 16 (5): 525- 532.
doi: 10.3969/j.issn.1672-2337.2018.05.010 |
|
SHAO J Q, QU C W, LI J W. Performance analysis of convolutional neural networks for SAR target recognition[J]. Radar Science and Technology, 2018, 16 (5): 525- 532.
doi: 10.3969/j.issn.1672-2337.2018.05.010 |
|
| 16 |
CHEN S Z, WANG H P, XU F, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Trans. on Geoscience and Remote Sensing, 2016, 54 (8): 4806- 4817.
doi: 10.1109/TGRS.2016.2551720 |
| 17 |
GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: a survey[J]. Computational Visual Media, 2022, 8 (3): 331- 368.
doi: 10.1007/s41095-022-0271-y |
| 18 |
TANG T, CUI Y T, FENG R, et al. Vehicle target recognition in SAR images with complex scenes based on mixed attention mechanism[J]. Information, 2024, 15 (3): 159- 161.
doi: 10.3390/info15030159 |
| 19 | HUANG Z C, SHI M Y, CHEN Y R, et al. A self-attention armed lightweight optronic convolutional neural network for SAR target recognition[C]//Proc. of the IET International Radar Conference Proceedings, 2023. |
| 20 |
LANG P, FU X J, FENG C, et al. LW-CMDANet: a novel attention network for SAR automatic target recognition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 6615- 6630.
doi: 10.1109/JSTARS.2022.3195074 |
| 21 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30, 178. |
| 22 | WU C, HE T Q. A Survey of Applications of Vision Transformer and its Variants[C]//Proc. of the 10th IEEE International Conference on Intelligent Data and Security, 2024: 21−25. |
| 23 | MIA M S, ARNOB A B H, NAIM A, et al. ViTs are everywhere: a comprehensive study showcasing vision transformers in different domain[C]//Proc. of the International Conference on the Cognitive Computing and Complex Data, 2023: 101−117. |
| 24 | LV P Y, WU W J, ZHONG Y F, et al. Review of vision transformer models for remote sensing image scene classification[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2022: 2231−2234. |
| 25 | HAN K, WANG Y H, CHEN H T, et al. A survey on vision transformer[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2022, 45 (1): 87- 110. |
| 26 | LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 10012−10022. |
| 27 |
王智睿, 康玉卓, 曾璇, 等. SAR-AIRcraft-1.0: 高分辨率SAR飞机检测识别数据集[J]. 雷达学报, 2023, 12 (4): 906- 922.
doi: 10.12000/JR23043 |
|
WANG Z R, KANG Y Z, ZENG X, et al. SAR-AIRcraft-1.0: a high-resolution SAR aircraft detection and recognition dataset[J]. Journal of Radars, 2023, 12 (4): 906- 922.
doi: 10.12000/JR23043 |
|
| 28 | PARK J, WOO S, LEE J Y, et al. Bam: Bottleneck attention module[EB/OL]. [2024-06-16]. https://arxiv.org/abs/1807.06514. |
| 29 | WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]//Proc. of the European Conference on Computer Vision, 2018: 3−19. |
| 30 | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proc. of the International Conference on Machine Learning, 2015. |
| 31 | NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]//Proc. of the 27th International Conference on Machine Learning, 2010: 807−814. |
| [1] | Weihong FU, Wenhong PENG, Naian LIU. SAR image small target detection method with hybrid attention optimization [J]. Systems Engineering and Electronics, 2025, 47(8): 2519-2526. |
| [2] | Kang NI, Wenjie JIA, Minrui ZOU, Zhizhong ZHENG. SAR object detection based on dynamic aggregation network [J]. Systems Engineering and Electronics, 2025, 47(8): 2527-2539. |
| [3] | Xinzheng ZHANG, Mengke YAN, Xiaolin ZHU. Noise pseudo-label tolerant semi-supervised SAR target recognition [J]. Systems Engineering and Electronics, 2025, 47(6): 1796-1805. |
| [4] | Ning LIU, Fangfang LI, Xinwu LI, Wen HONG. 3D reconstruction of high-rise buildings from SAR combined with footprint and phase information [J]. Systems Engineering and Electronics, 2025, 47(5): 1469-1486. |
| [5] | Amin DUAN, Zhaohui ZHANG. Quadratic decomposition-based cellular traffic prediction with hybrid neural network [J]. Systems Engineering and Electronics, 2025, 47(5): 1687-1697. |
| [6] | Yujia JIA, Siqian ZHANG, Tao TANG, Gangyao KUANG. Blind super-resolution reconstruction of airborne SAR real-time transmission images with enhanced scattering features [J]. Systems Engineering and Electronics, 2025, 47(3): 753-767. |
| [7] | Zhiwei YANG, Andong YANG, Gengchen LIANG, Xianghai LI, Xiaorui LI, Jie LIU. Multi-subband fusion for radial velocity ambiguity resolution [J]. Systems Engineering and Electronics, 2025, 47(3): 788-796. |
| [8] | Shilong CHEN, Lin LIU, Xiaobei WANG, Hansen ZENG, Yabo LIU, Xiang LIU. Fast compensation frequency-domain imaging processing algorithm for inter-pules frequency agility SAR [J]. Systems Engineering and Electronics, 2025, 47(3): 797-806. |
| [9] | Leilei JIA, Limin LIU, Jian DONG. Fast registration of optical and SAR images based on image structural information [J]. Systems Engineering and Electronics, 2025, 47(2): 428-441. |
| [10] | Yang MENG, Guoru ZHOU, Jie LI, Bingchen ZHANG. Discriminative sparse microwave imaging method based on structured dictionary learning [J]. Systems Engineering and Electronics, 2025, 47(1): 94-100. |
| [11] | Hongmeng CHEN, Jun LI, Jing LIU, Wei HUANG, Yingjie ZHANG, Yan CHEN, Yaobing LU. SAR-ISAR hybrid imaging method for sea surface ship target based on Radon time-frequency analysis [J]. Systems Engineering and Electronics, 2025, 47(1): 109-116. |
| [12] | Shangqu YAN, Yaowen FU, Wenpeng ZHANG, Wei YANG, Ruofeng YU, Fatong ZHANG. Review of the development status for ViSAR techniques [J]. Systems Engineering and Electronics, 2024, 46(8): 2650-2666. |
| [13] | Jin WANG, Xiangguang LENG, Zhongzhen SUN, Xiaojie MA, Yang YANG, Kefeng JI. Study of space/time varying defocus characteristics of complex moving ship targets in SAR imaging [J]. Systems Engineering and Electronics, 2024, 46(7): 2237-2255. |
| [14] | Shiqi XING, Penghui JI, Dahai DAI, Dejun FENG. Influence of azimuth-modulation jamming on high-resolution wide-swath multi-channel SAR [J]. Systems Engineering and Electronics, 2024, 46(6): 1946-1956. |
| [15] | Ding ZENG, Junjun YIN, Jian YANG. Nonlocal means filter for polarimetric SAR images based on fusion distance [J]. Systems Engineering and Electronics, 2024, 46(5): 1493-1502. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||